Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify main genes responsible for asthma attacks in children

An international team spearheaded by researchers from the University of Copenhagen has identified the genes that put some children at particularly high risk of serious asthma attacks, including one not previously suspected of being implicated in the disease.

In the long term, these new findings are expected to help improve treatment options for the disease, which represents a high cost for families and society alike.

Asthma is the most frequent chronic disease in children and also the most common reason for Danish children being admitted to hospital. Very young children are at especially high risk of severe asthma attacks requiring hospitalisation.

This is hard on both child and family and severely strains society's resources. Nonetheless, doctors still have insufficient knowledge about asthma attacks in infants, making the condition difficult to prevent and treat. It is hoped that the recent research findings will help change this.

... more about:
»COPSAC »DNA »asthma attack »asthma attacks

An international team spearheaded by researchers from the University of Copenhagen have now identified the genes that put some children at risk of experiencing severe asthma attacks. The results have been published in the prestigious scientific journal Nature Genetics.

"Our results show that asthma attacks requiring young children to be hospitalised are usually genetically related. Genes play a far greater role in children with asthma than in adults. By screening children's DNA we've discovered that a gene called CDHR3, which was previously unassociated with the disease, plays a key role for the development of asthma, particularly in the very early years of life.

Our study supports the theory that asthma is not just a single disease, but a complex of several sub-types that should be genetically mapped and understood individually if we are to prevent and treat the disease properly in future," says Klaus Bønnelykke, MD, PhD. He works for the Copenhagen Studies of Asthma in Childhood (COPSAC), the Danish Pediatric Asthma Center, Copenhagen University Hospital.

The researchers have studied the genes of 1,200 young children aged between two and six who had been hospitalised several times because of severe asthma attacks, and compared them with 2,500 healthy people.

Individualised treatment

Today doctors use the same medication to treat different types and degrees of asthma, but the researchers hope that improved understanding of the sub-types of the disease will pave the way for individualised treatment in future.

"Although good asthma medication is available today, it doesn't work for everyone. Specifically we need effective medicine to prevent very young children from being hospitalised and to treat them once they have been admitted. That's why we started looking at this particular group. Because asthma symptoms are fairly similar in all children, doctors tend to approach the condition in the same way. However, in reality asthma has many different underlying mechanisms, which need to be individually mapped," says Klaus Bønnelykke. He explains that to date researchers have focused on various theories about asthma attack prevention in young children, for example, recommending breastfeeding and avoiding pets and dust mites in the home.

"We know that children exposed to smoking have a higher risk of asthma attacks, but beyond that, none of our advice has really helped, and we won't make any progress until we understand the individual sub-types of asthma and their underlying mechanisms. In this respect knowledge about risk genes is an important step in the right direction," he points out.

Large volume of data

The study was headed by Klaus Bønnelykke and his colleague Hans Bisgaard, Professor of Paediatrics at the University of Copenhagen, chief physician of the Copenhagen Studies of Asthma in Childhood (COPSAC) and head of the Danish Paediatric Asthma Center. The study was conducted in collaboration with various research groups, including the Danish Centre for Neonatal Screening, Statens Serum Institut, Copenhagen, and Center for Biological Sequence Analysis (CBS), Technical University of Denmark,, as well as research teams in the USA, Spain, the UK and the Netherlands.

The study was based on examinations of 1,200 Danish children hospitalised for asthma and 2,500 healthy individuals. Two- to six-year-old children who had been hospitalised at least twice were identified in the hospital records. Their DNA was then screened for risk genes, and subsequent studies of children from Denmark and abroad confirmed the discovery of a new risk gene (CDHR3).


Klaus Bønnelykke, MD, PhD
COPSAC, Danish Paediatric Asthma Center, the Faculty of Health and Medical Sciences
Tel.: +45 31 90 32 59
About asthma:
Asthma means shortness of breath. It is a respiratory disorder that can affect people of all ages – children, adults and the elderly. The symptoms often manifest as bouts of coughing, breathlessness and wheezing. You can be genetically disposed to the disease, but beyond that the reasons some people get asthma are unknown. For most sufferers, asthma is a chronic condition lasting many years. Some people grow out of the disease while others find themselves symptom-free and needing no medication for a period, after which their asthma returns. The new research findings indicate that more disease sub-type mapping is needed in order to improve future treatment and prevention options. Source: Astma-Allergi Danmark and Klaus Bønnelykke, PhD, Danish Paediatric Asthma Center, University of Copenhagen

About the CDHR3 gene

CDHR3 impacts the lungs directly, and the new research results indicate that it plays a particularly important role in the lungs of young children with severe asthma. Over time the researchers hope to be able to map the precise mechanisms involving the gene as well as the environmental factors that trigger activation of the gene in some children. The goal is to be able to prevent and treat the disease with customised medication.

Klaus Bønnelykke | EurekAlert!
Further information:

Further reports about: COPSAC DNA asthma attack asthma attacks

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>