Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key role of microRNAs in melanoma metastasis

12.07.2011
Tumor cell biomarkers show promise as therapeutic targets for deadliest form of skin cancer

Researchers at the NYU Cancer Institute, an NCI-designated cancer center at NYU Langone Medical Center, identified for the first time the key role specific microRNAs (miRNAs) play in melanoma metastasis to simultaneously cause cancer cells to invade and immunosuppress the human body's ability to fight abnormal cells. The new study is published in the July 11, 2011 issue of the journal Cancer Cell.

Researchers performed a miRNA analysis of human melanoma tissues, including primary and metastatic tumors. They found in both sets of tumor cells significantly high levels of a cluster of two miRNAs called miR-30b and miR-30d (miR-30b/30d). Higher levels of miR-30b/30d in melanoma tumor cells were linked to advanced stages of cancer, tumor progression, potential metastasis and reduced overall patient survival.

"Melanoma patients with higher levels of these miRNAs in their tumor cells are at greater risk for melanoma metastasis from their primary tumor," said Eva Hernando, PhD, senior author of the study and assistant professor in the Department of Pathology at NYU Langone Medical Center.

In the study, the benefit of silencing miRNAs in melanoma tumor cells was tested. This experiment led to the successful suppression of cell invasion, migration and metastatic melanoma. In addition, the study shows the over expression of miRNAs in tumor cells suppresses the normal function of GALNT7, an enzyme that modifies proteins on the surface of cells to control cell communication, cell migration and immune system surveillance. These miRNAs inhibit the role of GALNT7 in tumor cells leading to the spread of cancer.

"Our study results may have a direct clinical implication on the management of melanoma patients since these miRNAs can potentially serve as a new biomarker of a more aggressive tumor," said Avital Gaziel-Sovran, lead author of the study and NYU graduate student who conducted many of the experiments.

Melanoma is the deadliest form of skin cancer and one of the most invasive and aggressive tumor types. In the study, miRNAs were identified as strong promoters of the metastatic behavior of melanoma cells. miRNAs are the short pieces of RNA that regulate gene and cellular activities and are known to be linked to cancers like melanoma. However, this new research shows how these miRNAs increase melanoma cells' capacity to migrate, spread and metastasize.

"This study adds another piece to the melanoma puzzle showing how a few millimeter lesion on the skin's surface can quickly metastasize by invading other parts of the body like the lungs and brain so aggressively," said Dr. Hernando, a member of the Melanoma Program at the NYU Cancer Institute and the Center of Excellence on Cancers of the Skin at NYU Langone. "This study helps us better understand exactly why melanoma is so metastatic and suggests how miRNAs are a new potential therapeutic target for battling the disease."

The study was a collaboration between the Departments of Pathology, Dermatology, Environmental Medicine and Medicine, the Interdisciplinary Melanoma Cooperative Group and the NYU Center for Health Informatics and Bioinformatics at NYU Langone Medical Center and the Department of Chemistry at New York University.

About NYU Langone Medical Center:

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the first rehabilitation hospital in the world; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousand of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>