Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify key genes and prototype predictive test for schizophrenia

An Indiana University-led research team, along with a group of national and international collaborators, has identified and prioritized a comprehensive group of genes most associated with schizophrenia that together can generate a score indicating whether an individual is at higher or lower risk of developing the disease.

Using a convergent functional genomics approach that incorporates a variety of experimental techniques, the scientists also were able to apply a panel of their top genes to data from other studies of schizophrenia and successfully identify which patients had been diagnosed with schizophrenia and which had not, according to a report published online today by the journal Molecular Psychiatry.

Evaluating the biological pathways in which the genes are active, the researchers also proposed a model of schizophrenia as a disease emerging from a mix of genetic variations affecting brain development and neuronal connections along with environmental factors, particularly stress.

"At its core, schizophrenia is a disease of decreased cellular connectivity in the brain, precipitated by environmental stress during brain development, among those with genetic vulnerability," said principal investigator Alexander B. Niculescu III, M.D., Ph.D., associate professor of psychiatry and medical neuroscience at the IU School of Medicine and director of the Laboratory of Neurophenomics at the IU Institute of Psychiatric Research.

"For first time we have a comprehensive list of the genes that have the best evidence for involvement in schizophrenia," said Niculescu, who is also staff psychiatrist and investigator at the Richard L. Roudebush Veterans Affairs Medical Center.

Schizophrenia is a relatively widespread psychiatric disease, affecting about 1 percent of the population, often with devastating impact. People with schizophrenia can have difficulty thinking logically and telling the difference between real and unreal experiences, and may engage in bizarre behavior.

When the test estimating the risk for schizophrenia is refined, it could provide guidance to caregivers and health care professionals about young people in families with a history of the disease, prompting early intervention and treatment when behavioral symptoms of schizophrenia occurred among those at higher risk, Dr. Niculescu said.

He stressed that a score indicating a higher risk of schizophrenia "doesn't determine your destiny. It just means that your neuronal connectivity is different, which could make you more creative, or more prone to illness."

"It's all on a continuum; these genetic variants are present throughout the population. If you have too many of them, in the wrong combination, in an environment where you are exposed to stress, alcohol and drugs, and so on, that can lead to the development of the clinical illness," he said.

The prototype test was able to predict whether a person was at a higher or lower risk of schizophrenia in about two-thirds of cases.

To identify and prioritize the genes reported Tuesday, the researchers combined data from several different types of studies. These included genome-wide association studies, gene expression data derived from human tissue samples, genetic linkage studies, genetic evidence from animal models, and other work. This approach, called convergent functional genomics, has been pioneered by Niculescu and colleagues, and relies on multiple independent lines of evidence to implicate genes in clinical disorders.

The authors noted that the results were stronger when analyses were performed using gene-level data, rather than analyses based on individual mutations -- called single nucleotide polymorphisms, or SNPs -- in those genes. Multiple different SNPs can spark a particular gene's role in the development of schizophrenia, so evidence for the genes, and the biological mechanisms in which they play a role, was much stronger from study to study than was the evidence for individual SNPs.

Past research looking at individual mutations was difficult to replicate from study to study, Dr. Niculescu said. Tuesday's paper, however, indicates that much of the research done in recent years has in fact produced consistent results at a gene and biological pathway level.

"There is a lot more reproducibility and concordance in the field than people realized," he said.

"Finally now, by better understanding the genetic and biological basis of the illness, we can develop better tests for it, as well as better treatments. The future of medicine is not just treatment but prevention, so we hope this work will move things in the right direction."

Additional authors of the paper are Mikias Ayalew, Helen Le-Niculescu, Daniel Levey, Nitika Jain, Bharathi Eddula-Changala, Sagar Patel, Evan Winiger, Alan Breier, Anantha Shekhar, John Nurnberger, and Daniel Koller from IU; Aiden Corvin from Trinity College; Mark Geyer and Ming Tsuang from UC San Diego; Daniel Salomon and Nicholas Schork from The Scripps Research Institute; Richard Amdur and Ayman Fanous from Washington DC VA Medical Center; and Michael O' Donovan from Cardiff University.

Support for the research was provided by a National Institutes of Health Director's New Innovator Award (1DP2OD007363) and a Veterans Administration Merit Award (1I01CX000139-01).

Eric Schoch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>