Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key genes and prototype predictive test for schizophrenia

15.05.2012
An Indiana University-led research team, along with a group of national and international collaborators, has identified and prioritized a comprehensive group of genes most associated with schizophrenia that together can generate a score indicating whether an individual is at higher or lower risk of developing the disease.

Using a convergent functional genomics approach that incorporates a variety of experimental techniques, the scientists also were able to apply a panel of their top genes to data from other studies of schizophrenia and successfully identify which patients had been diagnosed with schizophrenia and which had not, according to a report published online today by the journal Molecular Psychiatry.

Evaluating the biological pathways in which the genes are active, the researchers also proposed a model of schizophrenia as a disease emerging from a mix of genetic variations affecting brain development and neuronal connections along with environmental factors, particularly stress.

"At its core, schizophrenia is a disease of decreased cellular connectivity in the brain, precipitated by environmental stress during brain development, among those with genetic vulnerability," said principal investigator Alexander B. Niculescu III, M.D., Ph.D., associate professor of psychiatry and medical neuroscience at the IU School of Medicine and director of the Laboratory of Neurophenomics at the IU Institute of Psychiatric Research.

"For first time we have a comprehensive list of the genes that have the best evidence for involvement in schizophrenia," said Niculescu, who is also staff psychiatrist and investigator at the Richard L. Roudebush Veterans Affairs Medical Center.

Schizophrenia is a relatively widespread psychiatric disease, affecting about 1 percent of the population, often with devastating impact. People with schizophrenia can have difficulty thinking logically and telling the difference between real and unreal experiences, and may engage in bizarre behavior.

When the test estimating the risk for schizophrenia is refined, it could provide guidance to caregivers and health care professionals about young people in families with a history of the disease, prompting early intervention and treatment when behavioral symptoms of schizophrenia occurred among those at higher risk, Dr. Niculescu said.

He stressed that a score indicating a higher risk of schizophrenia "doesn't determine your destiny. It just means that your neuronal connectivity is different, which could make you more creative, or more prone to illness."

"It's all on a continuum; these genetic variants are present throughout the population. If you have too many of them, in the wrong combination, in an environment where you are exposed to stress, alcohol and drugs, and so on, that can lead to the development of the clinical illness," he said.

The prototype test was able to predict whether a person was at a higher or lower risk of schizophrenia in about two-thirds of cases.

To identify and prioritize the genes reported Tuesday, the researchers combined data from several different types of studies. These included genome-wide association studies, gene expression data derived from human tissue samples, genetic linkage studies, genetic evidence from animal models, and other work. This approach, called convergent functional genomics, has been pioneered by Niculescu and colleagues, and relies on multiple independent lines of evidence to implicate genes in clinical disorders.

The authors noted that the results were stronger when analyses were performed using gene-level data, rather than analyses based on individual mutations -- called single nucleotide polymorphisms, or SNPs -- in those genes. Multiple different SNPs can spark a particular gene's role in the development of schizophrenia, so evidence for the genes, and the biological mechanisms in which they play a role, was much stronger from study to study than was the evidence for individual SNPs.

Past research looking at individual mutations was difficult to replicate from study to study, Dr. Niculescu said. Tuesday's paper, however, indicates that much of the research done in recent years has in fact produced consistent results at a gene and biological pathway level.

"There is a lot more reproducibility and concordance in the field than people realized," he said.

"Finally now, by better understanding the genetic and biological basis of the illness, we can develop better tests for it, as well as better treatments. The future of medicine is not just treatment but prevention, so we hope this work will move things in the right direction."

Additional authors of the paper are Mikias Ayalew, Helen Le-Niculescu, Daniel Levey, Nitika Jain, Bharathi Eddula-Changala, Sagar Patel, Evan Winiger, Alan Breier, Anantha Shekhar, John Nurnberger, and Daniel Koller from IU; Aiden Corvin from Trinity College; Mark Geyer and Ming Tsuang from UC San Diego; Daniel Salomon and Nicholas Schork from The Scripps Research Institute; Richard Amdur and Ayman Fanous from Washington DC VA Medical Center; and Michael O' Donovan from Cardiff University.

Support for the research was provided by a National Institutes of Health Director's New Innovator Award (1DP2OD007363) and a Veterans Administration Merit Award (1I01CX000139-01).

Eric Schoch | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>