Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Key Enzyme in Melanoma Cell Development

18.06.2010
Virginia Commonwealth University researchers have discovered a mechanism by which an enzyme regulates gene expression and growth in melanoma cells, a finding that could someday lead to more effective drugs to attack cancers and make them more treatable.

Melanoma, the most serious type of skin cancer, is highly resistant to current therapeutic strategies for reasons that are not well understood. New research at VCU suggests that an enzyme discovered in 2003 might be used to target a specific genetic component that helps to regulate gene expression and defends melanoma cells against treatment.

The findings are reported online this week in the Proceedings of the National Academy of Sciences.

“By selectively and specifically targeting molecules for degradation that serve as gatekeepers for cancer growth, progression and resistance to therapy, it may be possible to turn the cancer cells’ defense into an offense that can be used as an effective approach to destroy the tumor,” said Paul B. Fisher, Ph.D., professor and chair of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

Several years ago, Fisher led a team of scientists at Columbia University in identifying an enzyme involved in halting the growth of human malignant melanoma and other cancer cells. The enzyme, called human polynucleotide phosphorylase or hPNPaseold-35, drives cancerous cells to irreversibly lose their growth potential and acquire properties of more normal cells, a process called terminal cell differentiation. The enzyme also is important in cellular senescence, when a cell cannot divide anymore and dies. Additionally, the investigators developed new strategies for promoting cancer cell-specific expression of this enzyme, which reduced tumor growth in animal cancer models.

Fisher, now at VCU, and colleagues report that hPNPaseold-35 selectively targets and degrades a genetic component known as microRNA-221. MicroRNAs are short genetic components that act like a volume control knob to regulate the production of defined proteins in cells.

MicroRNAs regulate the expression of more than a third of human genes. In recent years, they have been recognized as causing over- or under-expression of genes linked to the majority of cancers and other diseases. Researchers are exploring microRNAs’ roles to understand how they could be used as potential targets for therapies.

The work by Fisher’s group indicates that showering the cell with the hPNPaseold-35 enzyme preferentially degrades microRNA-221, a microRNA that is elevated in multiple cancers including melanoma and which regulates gene expression that promotes the cancer cells’ ability to thrive and spread. MicroRNA-221 also endows melanoma and other cancers with the capacity to resist chemotherapy.

“The present study provides the first observation that microRNAs may be regulated by selective degradation, providing an entry point for developing novel approaches for the therapy of melanoma and other cancers, Fisher said.

The VCU study also found that interferon-beta, a treatment for melanoma and other cancers, induces cells to produce the enzyme while also interfering with the ability of microRNA-221 to perform. Fisher said this provides one possible explanation for how interferon-beta suppresses growth of melanoma cells.

The work was supported by grants from the National Institutes of Health and the Samuel Waxman Cancer Research Foundation.

Fisher, who also is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research at the VCU Massey Cancer Center, led the investigative team at the VCU School of Medicine, which included Swadesh K. Das, Ph.D., a postdoctoral fellow; Upneet K. Sokhi, graduate student; Sujit K. Bhutia, Ph.D., postdoctoral fellow; Belal Azab, graduate student; Zhao-zhong Su, Ph.D., associate professor in VCU’s Department of Human and Molecular Genetics; and Devanand Sarkar, MBBS, Ph.D., assistant professor the Department of Human and Molecular Genetics and member of the VCU Institute of Molecular Medicine.

About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Anne Buckley | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>