Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Key Enzyme in Melanoma Cell Development

18.06.2010
Virginia Commonwealth University researchers have discovered a mechanism by which an enzyme regulates gene expression and growth in melanoma cells, a finding that could someday lead to more effective drugs to attack cancers and make them more treatable.

Melanoma, the most serious type of skin cancer, is highly resistant to current therapeutic strategies for reasons that are not well understood. New research at VCU suggests that an enzyme discovered in 2003 might be used to target a specific genetic component that helps to regulate gene expression and defends melanoma cells against treatment.

The findings are reported online this week in the Proceedings of the National Academy of Sciences.

“By selectively and specifically targeting molecules for degradation that serve as gatekeepers for cancer growth, progression and resistance to therapy, it may be possible to turn the cancer cells’ defense into an offense that can be used as an effective approach to destroy the tumor,” said Paul B. Fisher, Ph.D., professor and chair of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

Several years ago, Fisher led a team of scientists at Columbia University in identifying an enzyme involved in halting the growth of human malignant melanoma and other cancer cells. The enzyme, called human polynucleotide phosphorylase or hPNPaseold-35, drives cancerous cells to irreversibly lose their growth potential and acquire properties of more normal cells, a process called terminal cell differentiation. The enzyme also is important in cellular senescence, when a cell cannot divide anymore and dies. Additionally, the investigators developed new strategies for promoting cancer cell-specific expression of this enzyme, which reduced tumor growth in animal cancer models.

Fisher, now at VCU, and colleagues report that hPNPaseold-35 selectively targets and degrades a genetic component known as microRNA-221. MicroRNAs are short genetic components that act like a volume control knob to regulate the production of defined proteins in cells.

MicroRNAs regulate the expression of more than a third of human genes. In recent years, they have been recognized as causing over- or under-expression of genes linked to the majority of cancers and other diseases. Researchers are exploring microRNAs’ roles to understand how they could be used as potential targets for therapies.

The work by Fisher’s group indicates that showering the cell with the hPNPaseold-35 enzyme preferentially degrades microRNA-221, a microRNA that is elevated in multiple cancers including melanoma and which regulates gene expression that promotes the cancer cells’ ability to thrive and spread. MicroRNA-221 also endows melanoma and other cancers with the capacity to resist chemotherapy.

“The present study provides the first observation that microRNAs may be regulated by selective degradation, providing an entry point for developing novel approaches for the therapy of melanoma and other cancers, Fisher said.

The VCU study also found that interferon-beta, a treatment for melanoma and other cancers, induces cells to produce the enzyme while also interfering with the ability of microRNA-221 to perform. Fisher said this provides one possible explanation for how interferon-beta suppresses growth of melanoma cells.

The work was supported by grants from the National Institutes of Health and the Samuel Waxman Cancer Research Foundation.

Fisher, who also is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research at the VCU Massey Cancer Center, led the investigative team at the VCU School of Medicine, which included Swadesh K. Das, Ph.D., a postdoctoral fellow; Upneet K. Sokhi, graduate student; Sujit K. Bhutia, Ph.D., postdoctoral fellow; Belal Azab, graduate student; Zhao-zhong Su, Ph.D., associate professor in VCU’s Department of Human and Molecular Genetics; and Devanand Sarkar, MBBS, Ph.D., assistant professor the Department of Human and Molecular Genetics and member of the VCU Institute of Molecular Medicine.

About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Anne Buckley | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>