Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify genetic mutation for rare cancer

Gene sequencing program gives researchers new leads to improve cancer treatment

It started with a 44-year-old woman with solitary fibrous tumor, a rare cancer seen in only a few hundred people each year.

By looking at the entire DNA from this one patient's tumor, researchers have found a genetic anomaly that provides an important clue to improving how this cancer is diagnosed and treated.

Researchers at the University of Michigan Comprehensive Cancer Center sequenced the tumor's genome through a new program called MI-ONCOSEQ, which is designed to identify genetic mutations in tumors that might be targeted with new therapies being tested in clinical trials.

The sequencing also allows researchers to find new mutations. In this case, an unusual occurrence of two genes - NAB2 and STAT6 - fusing together. This is the first time this gene fusion has been identified.

"In most cases, mutations are identified because we see them happening again and again. Here, we had only one case of this. We knew NAB2-STAT6 was important because integrated sequencing ruled out all the known cancer genes. That allowed us to focus on what had been changed," says lead study author Dan R. Robinson, research fellow with the Michigan Center for Translational Pathology.

Once they found the aberration, the researchers looked at 51 other tumor samples from benign and cancerous solitary fibrous tumors, looking for the NAB2-STAT6 gene fusion. It showed up in every one of the samples. Results are published online in Nature Genetics.

"Genetic sequencing is extremely important with rare tumors," says study co-author Scott Schuetze, M.D., associate professor of internal medicine at the U-M Medical School. "Models of rare cancers to study in the laboratory are either not available or very limited. The sequencing helps us to learn more about the disease that we can use to develop better treatments or to help diagnose the cancer in others."

The NAB2-STAT6 fusion may prove to be a difficult target for therapies, but researchers believe they may be able to attack the growth signaling cycle that leads to this gene fusion.

"Understanding the changes induced in the cell by the NAB2-STAT6 gene fusion will help us to select novel drugs to study in patients with advanced solitary fibrous tumors. Currently this is a disease for which there are no good drug therapies available and patients are in great need of better treatments," Schuetze says.

No treatments or clinical trials are currently available based on these findings. Additional testing in the lab is needed to assess the best way to target NAB2-STAT6. The gene fusion could also potentially be used to help identify solitary fibrous tumors in cases where diagnosis is challenging.

Additional authors: Yi-Mi Wu; Shanker Kalyana-Sundaram; Xuhong Cao; Robert J. Lonigro; Yun-Shao Sung; Rui Wang; Fengyun Su; Matthew K. Iyer; Sameek Roychowdhury; Javed Siddiqui; Kenneth J. Pienta; Lakshmi P. Kunju; Moshe Talpaz; and Arul M. Chinnaiyan from U-M; Chun-Liang Chen; Lei Zhang; Samuel Singer; and Cristina R. Antonescu from Memorial Sloan-Kettering Cancer Center; Juan Miguel Mosquera from Weill Cornell Medical College.

Funding: National Cancer Institute grants: U01 CA111275, 5 P30 CA46592, P01 CA047179-15A2, and P50 CA140146-01; National Functional Genomics Center grant W81XWH-11-1-0520; U.S. Department of Defense; the Linn Fund, Cycle for Survival, the Alan Rosenthal Research Fund for Research in Sarcoma, the Weinstein Solitary Fibrous Tumor Research Fund, Doris Duke Charitable Foundation, Burroughs Wellcome Foundation, American Cancer Society, A. Alfred Taubman Institute at the University of Michigan.

Disclosure: The University of Michigan has filed for patent protection on the NAB2-STAT6 gene fusion and is currently looking for licensing partners to help bring the technology to market.

Reference: Nature Genetics, published online Jan. 13, 2013, DOI: 10.1038/ng.2509

Written by Nicole Fawcett

Nicole Fawcett | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>