Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Genes Linked to Chemoresistance

23.07.2009
Two genes may contribute to chemotherapy resistance in drugs like 5-fluorouracil, which is used in liver cancer treatment, according to Virginia Commonwealth University Massey Cancer Center researchers.

Liver cancer is a highly aggressive form that has limited therapeutic options. One of the key challenges with cancer treatment is that patients can develop resistance to chemotherapy. Researchers are examining ways to prevent resistance by determining the molecular mechanisms involved with cancer progression, and then developing new generations of chemotherapeutic agents.

In the study, published online in the Early Edition of the Proceedings of the National Academy of Sciences the week of July 13, researchers reported that two genes - astrocyte elevated gene-1, or AEG-1, and late SV40 factor, LSF, contribute to resistance of a commonly used chemotherapeutic drug called 5-fluorouracil, or 5-FU. The team found that over-expression of AEG-1 increased resistance of the liver cells to 5-FU. They observed that a second gene, LSF, is under the control of AEG-1 and mediates a series of molecular pathways involved the resistance to 5-FU.

Previous studies suggest that the expression of AEG-1, is very low in normal cells or tissues such as breast, prostate, liver and brain. However, in cancers of the same organs, expression of AEG-1 is significantly increased. AEG-1 was initially cloned in the laboratory of Paul B. Fisher, Ph.D., director of the VCU Institute of Molecular Medicine.

Earlier this year, the team determined that AEG-1 modulates expression of genes relevant to the progression of liver cancer, including invasion, metastasis, resistance to chemotherapy, the formation of new blood vessels and senescence. They identified that LSF, a transcription factor that regulates gene expression, is increased by AEG-1.

“Since AEG-1 is a key regulator of liver cancer development and progression, understanding how this molecule works will provide profound insights into the mechanism of liver cancer development,” said principal investigator Devanand Sarkar, Ph.D., a Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center and assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine.

“By understanding these molecular pathways and mechanisms, we may be able to create new drugs to inhibit the expression of AEG-1 or LSF and even develop combination drug therapies to enhance the effectiveness of 5- fluorouracil.”

“These findings may have important therapeutic implications. Based on the expression level of AEG-1 or LSF in tumor biopsy samples, a clinician might determine whether a patient would respond to 5-fluorouracil and thus design an effective chemotherapeutic protocol,” he said.

Sarkar said that AEG-1 contributes to resistance to not only 5-FU, but also to other chemotherapeutics such as doxorubicin and cisplatin, although the molecular mechanism of resistance to the latter drugs is different from 5-FU. The team is currently conducting studies to further understand the molecular mechanisms by which AEG-1 induces resistance to chemotherapy so that this knowledge might be applied to develop strategies to maximize the efficacy of chemotherapeutics. Additionally, novel combinatorial treatment approaches that incorporate AEG-1 or LSF inhibition in a standard chemotherapeutic protocol will be evaluated for their efficacy in inhibiting liver cancer in animal models.

This work was supported by grants from The Goldhirsh Foundation, the National Institutes of Health, and the Dana Foundation.

Sarkar worked with a team that included VCU School of Medicine researchers Byoung Kwon Yoo, Ph.D., Zao-zhong Su, Ph.D., Rachel Gredler, B.S., Nicollaq Vozhilla, D.V.M., Dong Chen, B.S., and Paul B. Fisher, M.Ph., Ph.D. Also contributing were Talitha Forcier, B.S., and Khalid Shah, Ph.D., from Harvard Medical School; and Utsav Saxena, and Ulla Hansen, Ph.D., from Boston University. The VCU Institute of Molecular Medicine also provided support in conducting these studies.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

About the VCU Massey Cancer Center:

The VCU Massey CancerCenter is one of 63 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>