Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify Genes Linked to Chemoresistance

Two genes may contribute to chemotherapy resistance in drugs like 5-fluorouracil, which is used in liver cancer treatment, according to Virginia Commonwealth University Massey Cancer Center researchers.

Liver cancer is a highly aggressive form that has limited therapeutic options. One of the key challenges with cancer treatment is that patients can develop resistance to chemotherapy. Researchers are examining ways to prevent resistance by determining the molecular mechanisms involved with cancer progression, and then developing new generations of chemotherapeutic agents.

In the study, published online in the Early Edition of the Proceedings of the National Academy of Sciences the week of July 13, researchers reported that two genes - astrocyte elevated gene-1, or AEG-1, and late SV40 factor, LSF, contribute to resistance of a commonly used chemotherapeutic drug called 5-fluorouracil, or 5-FU. The team found that over-expression of AEG-1 increased resistance of the liver cells to 5-FU. They observed that a second gene, LSF, is under the control of AEG-1 and mediates a series of molecular pathways involved the resistance to 5-FU.

Previous studies suggest that the expression of AEG-1, is very low in normal cells or tissues such as breast, prostate, liver and brain. However, in cancers of the same organs, expression of AEG-1 is significantly increased. AEG-1 was initially cloned in the laboratory of Paul B. Fisher, Ph.D., director of the VCU Institute of Molecular Medicine.

Earlier this year, the team determined that AEG-1 modulates expression of genes relevant to the progression of liver cancer, including invasion, metastasis, resistance to chemotherapy, the formation of new blood vessels and senescence. They identified that LSF, a transcription factor that regulates gene expression, is increased by AEG-1.

“Since AEG-1 is a key regulator of liver cancer development and progression, understanding how this molecule works will provide profound insights into the mechanism of liver cancer development,” said principal investigator Devanand Sarkar, Ph.D., a Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center and assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine.

“By understanding these molecular pathways and mechanisms, we may be able to create new drugs to inhibit the expression of AEG-1 or LSF and even develop combination drug therapies to enhance the effectiveness of 5- fluorouracil.”

“These findings may have important therapeutic implications. Based on the expression level of AEG-1 or LSF in tumor biopsy samples, a clinician might determine whether a patient would respond to 5-fluorouracil and thus design an effective chemotherapeutic protocol,” he said.

Sarkar said that AEG-1 contributes to resistance to not only 5-FU, but also to other chemotherapeutics such as doxorubicin and cisplatin, although the molecular mechanism of resistance to the latter drugs is different from 5-FU. The team is currently conducting studies to further understand the molecular mechanisms by which AEG-1 induces resistance to chemotherapy so that this knowledge might be applied to develop strategies to maximize the efficacy of chemotherapeutics. Additionally, novel combinatorial treatment approaches that incorporate AEG-1 or LSF inhibition in a standard chemotherapeutic protocol will be evaluated for their efficacy in inhibiting liver cancer in animal models.

This work was supported by grants from The Goldhirsh Foundation, the National Institutes of Health, and the Dana Foundation.

Sarkar worked with a team that included VCU School of Medicine researchers Byoung Kwon Yoo, Ph.D., Zao-zhong Su, Ph.D., Rachel Gredler, B.S., Nicollaq Vozhilla, D.V.M., Dong Chen, B.S., and Paul B. Fisher, M.Ph., Ph.D. Also contributing were Talitha Forcier, B.S., and Khalid Shah, Ph.D., from Harvard Medical School; and Utsav Saxena, and Ulla Hansen, Ph.D., from Boston University. The VCU Institute of Molecular Medicine also provided support in conducting these studies.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see

About the VCU Massey Cancer Center:

The VCU Massey CancerCenter is one of 63 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at or call 1-877-4-MASSEY.

Sathya Achia Abraham | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>