Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene variant linked to glaucoma

22.09.2009
An international team, led by researchers from the University of California, San Diego School of Medicine and the National Eye Institute, has discovered gene variants for glaucoma in a black population. The finding could lead to future treatments or a cure for this disease, which leads to blindness in two million Americans each year.

The study by Kang Zhang, MD, PhD, Director of the Institute for Genomic Medicine and professor of ophthalmology and human genetics at the Shiley Eye Center at UC San Diego and J. Fielding Hejtmancik, MD, PhD, medical officer and chief of the Ophthalmic Molecular Genetics Section at the National Eye Institute, National Institutes of Health, along with the Barbados Family Study Group and colleagues in the United States, China and Barbados, will be published in the early online edition of the Proceedings of the National Academy of Science (PNAS) the week of September 21.

Glaucoma is the leading cause of blindness among blacks, affecting close to five percent of the population. The researchers chose to conduct the study in the Afro-Caribbean population of Barbados, where the incidence of glaucoma is double that figure – nearly 10 percent of all residents of the island – and where there is a strong genetic predisposition.

Known as "the silent thief of sight," glaucoma is a neurodegenerative disease that causes the death of ganglion cells of the retina, resulting in gradual and irreversible loss of peripheral vision. Reducing intra-ocular pressure can slow the progression to blindness, but there is no cure or reversal for glaucoma.

"The cause and progression of glaucoma are poorly understood, although we know there is a strong genetic predisposition to the disease," said co-author Robert N. Weinreb, MD, Director of the Hamilton Glaucoma Center and Distinguished Professor of Ophthalmology at UC San Diego.

"We have now identified very common gene variants that have a dramatic impact on an individual's risk for developing glaucoma," Zhang added. "These gene variants are present in 40 percent of individuals with glaucoma in the Barbados population and explains nearly one-third of their genetic risk for the disease. This study should give us a better handle on earlier diagnoses and new therapies."

Looking at 249 patients with glaucoma and 128 control subjects, the research built on early studies which scanned the entire human genome. The scientists then homed in on a particular segment of the human genome, and finally localized the gene on chromosome 2.

"Once we understand the specific gene or protein structure that is altered in the disease, we are one step closer to developing gene or stem cell-based therapies to treat glaucoma," said Zhang. Identifying the gene variants can also provide a more accurate and earlier diagnosis, allowing early intervention to slow glaucoma's progression.

Additional contributors to the study include researchers at the University of Utah; Yale University; Stony Brook University; University of the West Indies; Qingdao University, Qingdao, China; Sichuan Provincial People's Hospital, China; and West China Hospital, Sichuan University.

This work was supported by grants from the National Eye Institute of National Institutes of Health, Research to Prevent Blindness and the Burroughs Wellcome Fund.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>