Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene that spurs deadly brain cancer

07.12.2009
Howard Hughes Medical Institute (HHMI) researchers have identified a new factor that is necessary for the development of many forms of medulloblastoma, the most common type of malignant childhood brain cancer.

HHMI investigator Huda Y. Zoghbi and colleagues at Baylor College of Medicine prevented medulloblastoma from developing in mice by shutting down production of the protein Atoh1 in susceptible brain cells. The team's findings, reported in the December 4, 2009, issue of Science, suggest Atoh1 may be a new target for medulloblastoma treatment.

"When we cloned the gene for Atoh1 in 1996, we had no clue that it had any medical relevance," said Zoghbi, a neuroscientist and neurologist. "Now we know that it's critical for many medical issues, the most recent one being this common childhood cancer."

Atoh1 (also known as Math1) is a transcription factor that works in the nuclei of cells to keep certain genes switched on. It is evolutionarily ancient, appearing in slightly varying forms in various species, from fruit flies to humans. In cells where Atoh1 is active, it seems to be switched on only during fetal development, when cells proliferate rapidly to fill out the various parts of the nervous system.

However, in the region of the brain known as the cerebellum, Atoh1 is active after birth in the fast-dividing granule neuron precursor (GNPs) cells that eventually stop dividing and become mature granule neurons. "The cerebellar granule neurons are unique in that most of their development happens after birth, both in mice and humans," Zoghbi said.

A few years ago, experiments done in several laboratories hinted that Atoh1 might be required to keep GNPs in their fast-dividing state and make them more susceptible to developing into medulloblastoma tumors.

"The question for us was whether we could really prove, not just in the cell culture dish or in microarrays but in animals, that Atoh1 plays this role in medulloblastoma," Zoghbi said.

Ordinarily, to begin to discern the function of a gene such as Atoh1, researchers would engineer a strain of mice that lack the gene. But that had been tried in the 1990s, and the results were less than satisfying. Researchers found that Atoh1-knockout mice failed to develop properly in the womb, and died at birth. To study Atoh1's function after birth, Zoghbi's team, led by postdoctoral researcher Adriano Flora, devised a more advanced technique. First they bred a strain of mice with a genetic off-switch connected to their Atoh1 gene; then they injected a chemical into the brains of healthy newborn mice, to trigger this off-switch and eliminate the production of Atoh1 in GNPs. As a result, the GNPs immediately stopped proliferating and started maturing into granule neurons.

That result showed that Atoh1 helped keep GNPs in their ever-dividing state. Further experiments revealed that Atoh1 revs up GNPs by switching on a gene called Gli2, a well-known member of the Sonic Hedgehog signaling pathway that helps cells divide. The Sonic Hedgehog pathway is also inappropriately switched on in many cancers, including medulloblastoma.

"At this point we asked whether we could affect the development of medulloblastoma in mice by shutting down Atoh1," Zoghbi said.

To find out, the team applied their local Atoh1-shutdown technique to a special strain of mice with a specific genetic mutation that makes them develop medulloblastoma. In these mice, a mutant gene is switched on after birth, sending the Sonic Hedgehog signaling pathway into overdrive, causing precancerous lesions and tumors in the cerebellum. But when Zoghbi's team switched off Atoh1, these cancerous changes never occurred.

Establishing Atoh1 as a key player in the origin of medulloblastoma makes it a potential target for new drug treatments, Zoghbi said. But to Zoghbi, an important next step is to determine whether the protein is still needed to keep tumors growing after they've become established: "If we allow these tumors to develop, and then we take away Atoh1, would that make a difference?" Her lab and others are also now racing to determine what keeps Atoh1 inappropriately switched on in medulloblastoma cells, and what normally switches it off.

Zoghbi emphasized that she originally took up the study of Atoh1 as an exercise in pure biology, with no idea that it would have relevance to disease. "That just underscores the tremendous importance of doing science for science's sake," she said.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>