Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify gene set that shows which patients benefit from chemo after surgery

Lung cancer researchers have identified a genetic signature that can help doctors determine which patients with early-stage non-small cell lung cancer are at high risk for developing disease recurrence and therefore may benefit from chemotherapy after surgery ("adjuvant chemotherapy").

"The findings give patients and their doctors a clearer map of the appropriate post-operative treatment route to follow. Not all patients benefit from chemotherapy after surgery and those with less aggressive cancer may be spared from the potentially debilitating side effects of this treatment," says principal investigator Dr. Ming Tsao, pathologist at the Princess Margaret Hospital (PMH) Cancer Program, University Health Network (UHN), and Professor of Laboratory Medicine and Pathobiology at the University of Toronto. He also holds the M. Qasim Choksi Chair in Lung Cancer Translational Research at UHN.

"Our study was rigorously validated by multiple testing across data from different patient populations and so we believe these findings can be applied generally to other patients with early-stage non-small cell lung cancer," says Dr. Tsao.

"The ability to tell whether a particular patient is a good candidate for adjuvant chemotherapy will bring us closer to our goals of improving patient care through personalized medicine," adds study collaborator Dr. Frances Shepherd, PMH medical oncologist and holder of the Scott Taylor Chair in Lung Cancer Research at UHN.

The study, published online today in the Journal of Clinical Oncology (JCO 64325), advances the 2005 findings of the NCIC Clinical Trials Group study JBR.10, conducted in collaboration with the U.S. National Cancer Institute. The JBR.10 findings showed significant survival benefit from the anti-cancer drugs vinorelbine and cisplatin in patients with early-stage (stage I and II) non-small cell lung cancer whose tumors had been surgically removed. Dr. Tsao's research team and collaborators at NCIC Clinical Trials Group at Queen's University performed a genetic analysis of tumor tissue from 133 of the 482 patients from the JBR.10 study who had banked frozen tumor samples.

The Tsao team identified a set of 15 genes that, in 62 patients who did not receive chemotherapy after surgery, predicted which patients had aggressive cancers with high risk of recurrence and death (31 patients), and which had less aggressive disease and low risk of recurrence (31 patients).

They then applied the signature to 71 patients who were randomized to receive chemotherapy in the JBR.10 trial. Patients predicted to have aggressive disease experienced the greatest benefit from chemotherapy - with a 67 percent reduction in the risk of death - while chemotherapy did not reduce the risk of death in patients designated as low risk.

While a previous JBR.10 analysis showed that overall only patients with stage II disease benefited from chemotherapy after surgery, Dr. Tsao's study demonstrates that the 15 gene signature may identify patients with both stage I and II cancers who may benefit from post-operative chemotherapy.

The research was supported by the Canadian Cancer Society and the National Cancer Institute in the United States. Drs. Tsao and Shepherd, clinician-scientists at the hospital's research arm, the Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, are also supported by the PMH Foundation and the Ontario Ministry of Health and Long-term Care.

Princess Margaret Hospital and its research arm Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are research hospitals affiliated with the University of Toronto. For more information, go to

The NCIC Clinical Trials Group (NCIC CTG) is a cancer clinical trials cooperative group that conducts phase I-III trials testing anti-cancer and supportive therapies across Canada and internationally. It is one of the national programmes and networks of the Canadian Cancer Society Research Institute (CCSRI), and is supported by the CCSRI with funds raised by the Canadian Cancer Society (CCS). The NCIC CTG's Central Office is located at Queen's University in Kingston, Ontario, Canada.

Jane Finlayson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>