Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene set that shows which patients benefit from chemo after surgery

08.09.2010
Lung cancer researchers have identified a genetic signature that can help doctors determine which patients with early-stage non-small cell lung cancer are at high risk for developing disease recurrence and therefore may benefit from chemotherapy after surgery ("adjuvant chemotherapy").

"The findings give patients and their doctors a clearer map of the appropriate post-operative treatment route to follow. Not all patients benefit from chemotherapy after surgery and those with less aggressive cancer may be spared from the potentially debilitating side effects of this treatment," says principal investigator Dr. Ming Tsao, pathologist at the Princess Margaret Hospital (PMH) Cancer Program, University Health Network (UHN), and Professor of Laboratory Medicine and Pathobiology at the University of Toronto. He also holds the M. Qasim Choksi Chair in Lung Cancer Translational Research at UHN.

"Our study was rigorously validated by multiple testing across data from different patient populations and so we believe these findings can be applied generally to other patients with early-stage non-small cell lung cancer," says Dr. Tsao.

"The ability to tell whether a particular patient is a good candidate for adjuvant chemotherapy will bring us closer to our goals of improving patient care through personalized medicine," adds study collaborator Dr. Frances Shepherd, PMH medical oncologist and holder of the Scott Taylor Chair in Lung Cancer Research at UHN.

The study, published online today in the Journal of Clinical Oncology (JCO 64325), advances the 2005 findings of the NCIC Clinical Trials Group study JBR.10, conducted in collaboration with the U.S. National Cancer Institute. The JBR.10 findings showed significant survival benefit from the anti-cancer drugs vinorelbine and cisplatin in patients with early-stage (stage I and II) non-small cell lung cancer whose tumors had been surgically removed. Dr. Tsao's research team and collaborators at NCIC Clinical Trials Group at Queen's University performed a genetic analysis of tumor tissue from 133 of the 482 patients from the JBR.10 study who had banked frozen tumor samples.

The Tsao team identified a set of 15 genes that, in 62 patients who did not receive chemotherapy after surgery, predicted which patients had aggressive cancers with high risk of recurrence and death (31 patients), and which had less aggressive disease and low risk of recurrence (31 patients).

They then applied the signature to 71 patients who were randomized to receive chemotherapy in the JBR.10 trial. Patients predicted to have aggressive disease experienced the greatest benefit from chemotherapy - with a 67 percent reduction in the risk of death - while chemotherapy did not reduce the risk of death in patients designated as low risk.

While a previous JBR.10 analysis showed that overall only patients with stage II disease benefited from chemotherapy after surgery, Dr. Tsao's study demonstrates that the 15 gene signature may identify patients with both stage I and II cancers who may benefit from post-operative chemotherapy.

The research was supported by the Canadian Cancer Society and the National Cancer Institute in the United States. Drs. Tsao and Shepherd, clinician-scientists at the hospital's research arm, the Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, are also supported by the PMH Foundation and the Ontario Ministry of Health and Long-term Care.

Princess Margaret Hospital and its research arm Ontario Cancer Institute, which includes the Campbell Family Cancer Research Institute, have achieved an international reputation as global leaders in the fight against cancer. Princess Margaret Hospital is a member of the University Health Network, which also includes Toronto General Hospital and Toronto Western Hospital. All three are research hospitals affiliated with the University of Toronto. For more information, go to www.uhn.ca

The NCIC Clinical Trials Group (NCIC CTG) is a cancer clinical trials cooperative group that conducts phase I-III trials testing anti-cancer and supportive therapies across Canada and internationally. It is one of the national programmes and networks of the Canadian Cancer Society Research Institute (CCSRI), and is supported by the CCSRI with funds raised by the Canadian Cancer Society (CCS). The NCIC CTG's Central Office is located at Queen's University in Kingston, Ontario, Canada.

Jane Finlayson | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>