Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene that regulates tumors in neuroblastoma

04.06.2009
Virginia Commonwealth University researchers have identified a gene that may play a key role in regulating tumor progression in neuroblastoma, a form of cancer usually found in young children. Scientists hope the finding could lead to an effective therapy to inhibit the expression of this gene.

According to Paul B. Fisher, M.Ph., Ph.D., who is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research with the VCU Massey Cancer Center, and Seok-Geun Lee, Ph.D., assistant professor in the VCU Department of Human and Molecular Genetics, co-lead investigators of the study, the team has shown that astrocyte elevated gene-1, AEG-1, a cancer promoting gene, is frequently activated in neuroblastoma.

In the study published online in the May issue of the journal Oncogene, Fisher, Lee and their team found that the elevated expression of AEG-1 makes cancer cells highly aggressive and resistant to factors that may influence cell suicide, and that loss of AEG-1 reduces the tumor-causing properties of highly aggressive neuroblastoma cells. Additionally, the expression of AEG-1 was significantly elevated in six of 10 neuroblastoma patient-derived samples compared to normal peripheral nerve tissues.

Furthermore, they have shown the potential correlation between AEG-1 and MYCN in neuroblastoma. MYCN is a known genetic determinant of neuroblastoma and elevated levels have been observed in one third of neuroblastoma patients. MYCN is linked to aggressive tumor formation and poor clinical outcome.

“We believe that activation of AEG-1 in addition to MYCN is critical to the development and progression of neuroblastoma. This works shows that AEG-1 plays a crucial role in the development and progression of neuroblastoma through activating important signaling pathway and induction of MYCN,” said Fisher, who also is professor and chair of the Department of Human and Molecular Genetics, and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

“In addition, we have shown that AEG-1 could be a potential prognostic marker for neuroblastoma and a potential target for novel therapeutic strategies for neuroblastoma patients,” he said.

The team has already begun analyzing the expression of AEG-1 and its relationship with MYCN status in neuroblastoma patient samples. Through collaboration with John Maris, M.D., chair of neuroblastoma research at the University of Pennsylvania School of Medicine, the team will acquire data from approximately 2,000 neuroblastoma patient tissues. They will also test if inactivation of AEG-1 using small interfering RNA could be a therapeutic intervention for neuroblastoma through second collaborative effort with Bill Weiss, M.D., associate professor of Neurology at the University of California, San Francisco.

This work was supported by grants from the National Institutes of Health, the Samuel Waxman Cancer Research Foundation, the Dana Foundation, and the Goldhirsh Foundation.

Fisher worked with a team that included VCU School of Medicine researchers Zaozhong Su, Ph.D., associate professor in the VCU Department of Human and Molecular Genetics; Devanand Sarkar, M.B.B.S., Ph.D., assistant professor and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center, the VCU Institute of Molecular Medicine and the Department of Human and Molecular Genetics; H-Y Jeon, J.E. Richards, and N. Vozhilla, D.V.M., with the VCU Department of Human and Molecular Genetics; and T Van Maerken, M.D., with the Center for Medical Genetics at the Ghent University Hospital in Ghent, Belgium.

EDITOR’S NOTE: A copy of the study is available for reporters by email request from j.john@natureny.com.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

About the VCU Massey Cancer Center:

The VCU Massey CancerCenter is one of 63 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>