Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify gene that regulates tumors in neuroblastoma

04.06.2009
Virginia Commonwealth University researchers have identified a gene that may play a key role in regulating tumor progression in neuroblastoma, a form of cancer usually found in young children. Scientists hope the finding could lead to an effective therapy to inhibit the expression of this gene.

According to Paul B. Fisher, M.Ph., Ph.D., who is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research with the VCU Massey Cancer Center, and Seok-Geun Lee, Ph.D., assistant professor in the VCU Department of Human and Molecular Genetics, co-lead investigators of the study, the team has shown that astrocyte elevated gene-1, AEG-1, a cancer promoting gene, is frequently activated in neuroblastoma.

In the study published online in the May issue of the journal Oncogene, Fisher, Lee and their team found that the elevated expression of AEG-1 makes cancer cells highly aggressive and resistant to factors that may influence cell suicide, and that loss of AEG-1 reduces the tumor-causing properties of highly aggressive neuroblastoma cells. Additionally, the expression of AEG-1 was significantly elevated in six of 10 neuroblastoma patient-derived samples compared to normal peripheral nerve tissues.

Furthermore, they have shown the potential correlation between AEG-1 and MYCN in neuroblastoma. MYCN is a known genetic determinant of neuroblastoma and elevated levels have been observed in one third of neuroblastoma patients. MYCN is linked to aggressive tumor formation and poor clinical outcome.

“We believe that activation of AEG-1 in addition to MYCN is critical to the development and progression of neuroblastoma. This works shows that AEG-1 plays a crucial role in the development and progression of neuroblastoma through activating important signaling pathway and induction of MYCN,” said Fisher, who also is professor and chair of the Department of Human and Molecular Genetics, and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine.

“In addition, we have shown that AEG-1 could be a potential prognostic marker for neuroblastoma and a potential target for novel therapeutic strategies for neuroblastoma patients,” he said.

The team has already begun analyzing the expression of AEG-1 and its relationship with MYCN status in neuroblastoma patient samples. Through collaboration with John Maris, M.D., chair of neuroblastoma research at the University of Pennsylvania School of Medicine, the team will acquire data from approximately 2,000 neuroblastoma patient tissues. They will also test if inactivation of AEG-1 using small interfering RNA could be a therapeutic intervention for neuroblastoma through second collaborative effort with Bill Weiss, M.D., associate professor of Neurology at the University of California, San Francisco.

This work was supported by grants from the National Institutes of Health, the Samuel Waxman Cancer Research Foundation, the Dana Foundation, and the Goldhirsh Foundation.

Fisher worked with a team that included VCU School of Medicine researchers Zaozhong Su, Ph.D., associate professor in the VCU Department of Human and Molecular Genetics; Devanand Sarkar, M.B.B.S., Ph.D., assistant professor and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center, the VCU Institute of Molecular Medicine and the Department of Human and Molecular Genetics; H-Y Jeon, J.E. Richards, and N. Vozhilla, D.V.M., with the VCU Department of Human and Molecular Genetics; and T Van Maerken, M.D., with the Center for Medical Genetics at the Ghent University Hospital in Ghent, Belgium.

EDITOR’S NOTE: A copy of the study is available for reporters by email request from j.john@natureny.com.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

About the VCU Massey Cancer Center:

The VCU Massey CancerCenter is one of 63 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>