Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Gene Linked to Aggressive Progression of Liver Cancer

19.02.2009
Virginia Commonwealth University researchers have identified a gene that plays a key role in regulating liver cancer progression, a discovery that could one day lead to new targeted therapeutic strategies to fight the highly aggressive disease.

Hepatocellular carcinoma, HCC, or liver cancer, is the fifth most common cancer and the third leading cause of cancer deaths in the world. Treatment options for HCC include chemotherapy, chemoembolization, ablation and proton-beam therapy. Liver transplantation offers the best chance for a cure in patients with small tumors and significant associated liver disease.

In the study, published online in the February issue of the Journal of Clinical Investigation, researchers reported that the astrocyte elevated gene-1, AEG-1, plays a key role in regulating HCC in series of cellular models. By examining human liver tumor cells of patients with HCC, the team found that the expression of AEG-1 gradually increases as the tumor becomes more and more aggressive. Using microarray technology, they analyzed cDNA from the tumor cells and determined that AEG-1 modulates expression of genes relevant to the progression of HCC, including invasion, metastasis, resistance to chemotherapy, the formation of new blood vessels, and senescence. cDNAs are complementary DNAs that are generated from mRNAs to analyze gene expression profiles.

“AEG-1 also activates multiple intracellular signaling pathways that are known to be involved in HCC progression. So, strategies to inhibit AEG-1 that could lead to the shutdown of these pathways, either by small molecules or by siRNAs, might be an important therapeutic modality for HCC patients,” said principal investigator Devanand Sarkar, Ph.D., MBBS, assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine, and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center.

siRNAs are small inhibitory RNAs that can specifically inhibit targeted mRNA and protein production. siRNAs may be used in the future for targeted inhibition of AEG-1 in patients, Sarkar said.

According to Sarkar, the team found a significantly higher expression of AEG-1 protein in more than 90 percent of tumor samples from HCC patients compared to normal human liver cells.

“The expression of AEG-1 protein gradually increases as the disease becomes more aggressive. No other genes have been shown to be upregulated in such a high percentage of HCC patients,” said Sarkar.

Further, he said that findings from a separate pool of 132 HCC patients revealed significant overexpression of AEG-1 mRNA compared to normal liver. In a subset of these patients, the team detected an increased number of copies of the AEG-1 gene.

“We observed an increase in AEG-1 DNA, mRNA and protein in HCC patients, which indicates a significant involvement of AEG-1 in HCC progression. Stable overexpression of AEG-1 converts non-tumorigenic human HCC cells into highly aggressive vascular tumors and inhibition of AEG-1 abrogates tumorigenesis by aggressive HCC cells,” he said.

Previous studies suggest that the expression of AEG-1 is very low in normal cells or tissues such as breast, prostate and brain. However, in cancers of the same organs, expression of AEG-1 is significantly increased.

The team will conduct studies to further understand the molecular mechanisms by which AEG-1 works and identify other proteins with which it interacts.

This work was supported by grants from The Goldhirsh Foundation, the National Institutes of Health, the Spanish National Health Institute, and the Samuel Waxman Cancer Research Foundation.

Sarkar worked with a team that included VCU School of Medicine researchers, Byoung Kwon Yoo, Ph.D., Zao-zhong Su, Ph.D., Nitai D. Mukhopadhyay, Ph.D., Alan Scott Mills, M.D., Robert A. Fisher, M.D., and Paul B. Fisher, M.Ph., Ph.D.; Luni Emdad Ph.D., Augusto Villanueva, Ph.D., Samuel Waxman, M.D., Josep M. Llovet, M.D., all from the Mount Sinai School of Medicine in New York; and Derek Y Chiang, Ph.D., with the Broad Institute of Harvard and MIT. Sarkar and Paul B. Fisher are the founding members of the VCU Institute of Molecular Medicine, which also provided support in conducting these studies.

About VCU and the VCU Medical Center:
Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.jci.org/articles/view/36460
http://www.vcu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>