Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify Gene with Possible Link to Infertility in Mice

06.10.2009
Virginia Commonwealth University researchers have identified the role of a gene in regulating molecular signals involved with ovarian follicle development, which may one day help shed light on some of the causes of fertility issues in humans.

The steps involved with conception and pregnancy are delicate and complex – particularly the process of folliculogenesis. In females, fertility is dependant on the growth of a follicle, a structure that ultimately transforms to release a mature egg.

In an ordinary cycle, one follicle, known as the dominant follicle, matures to release an egg, while the rest of the eggs produced in that cycle will die. Disruption at any stage in the development of the follicle can prevent this maturation and impair fertility, as well as alter the production of hormones in the ovaries.

In the study, published online in the Oct. 1 issue of the journal Biology of Reproduction, researchers used a mouse model to examine the role of a gene known as Smad-3 in the early stages of follicular growth to better understand the molecular mechanisms that could influence fertility. Specifically, they looked at the signaling pathways involved in the follicles’ response to follicle stimulating hormone, or FSH. FSH is one of the most important hormones involved in fertility and is responsible for helping a woman’s body develop a mature egg.

The team, led by principal investigator Elizabeth McGee, M.D., associate professor of obstetrics and gynecology in the VCU School of Medicine, reported that female mice missing the Smad-3 gene did not experience normal ovulation and were infertile because there is a reduced ability of the follicle to respond to FSH stimulation. Further, the team concluded that Smad-3 regulates follicle growth and an important family of proteins that are essential for follicle development.

“Learning precisely how the FSH receptor is regulated is an important step in understanding the subtle defects in signal transduction that can interfere with follicle development and female fertility and could lead to new types of fertility treatments,” said McGee, who is director of reproductive endocrinology and infertility at the VCU Medical Center.

This work was supported by a grant from the National Institutes of Health.

About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | Newswise Science News
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Scientists call for improved technologies to save imperiled California salmon
14.12.2017 | NOAA Fisheries West Coast Region

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>