Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify new Gene Involved in the Development of Liver Cancer

20.04.2010
Virginia Commonwealth University researchers have identified a new tumor-promoting gene that may play a key role in the development of liver cancer. Levels of the gene’s expression are significantly higher in more than 90 percent of patients with the disease compared to their healthy counterparts.

Researchers at the Virginia Commonwealth University Massey Cancer Center and the VCU Institute of Molecular Medicine hope the findings could lead to an effective therapy to target and inhibit the expression of this gene and result in inhibition of cancer growth.

Hepatocellular carcinoma, HCC, or liver cancer, is the fifth most common cancer and the third leading cause of cancer deaths in the world. Treatment options for HCC include chemotherapy, chemoembolization, ablation and proton-beam therapy. Liver transplantation offers the best chance for a cure in patients with small tumors and significant associated liver disease.

In the study published online the week of April 19 in the Early Edition of the journal Proceedings of the National Academy of Sciences, researchers employing a series of molecular studies identified the new oncogene called LSF, and observed that LSF levels are significantly higher in HCC patients compared to healthy individuals.

Further, the team found that LSF plays an important role in the development and progression of HCC, and that inhibiting LSF can reverse the aggressive properties of human liver cancer cells. They have also identified the molecular mechanism by which LSF promotes the growth of tumors.

“Researchers have been studying the role of LSF for more than 25 years in fields outside of cancer, but our work is the first demonstration that LSF plays an important role in HCC,” said principal investigator Devanand Sarkar, Ph.D., MBBS, assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine, and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center and a member of the VCU Institute of Molecular Medicine.

“We show a novel mechanism of HCC development by LSF that provides us with fresh insight into the complex etiology and mechanism of carcinogenesis process. Because LSF is increased in such a high percentage of patients, it could be a potential target for therapeutic intervention,” he said.

According to Sarkar, LSF is a transcription factor, which means it can directly regulate the expression of genes. The team has identified specific genes, such as osteopontin, that are directly induced by LSF.

“Osteopontin is a key player in regulating tumor development and progression and the identification of a master regulator of osteopontin, such as LSF, is a very important discovery,” said Sarkar.

The team is currently testing small molecule inhibitors of LSF as a possible therapy for HCC in animal models.

“Analysis of LSF level in biopsy material may one day be used as a prognostic marker for HCC. Clinicians may be able to design treatment strategies based on the LSF level of a patient. For example, a patient with higher LSF level will respond more to LSF inhibitors. Newer combinatorial strategies can be developed incorporating LSF inhibition in one arm,” he said.

This work was supported in part by grants from the Goldhirsh Foundation, the Dana Foundation, the National Institutes of Health, the Samuel Waxman Cancer Research Foundation, National Institute of Environmental Health and the Liver Tissue Cell Distribution System.

About the VCU Massey Cancer Center
The VCU Massey CancerCenter is one of 65 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.
About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: Cancer End User Development HCC LSF VCU cancer research health services liver liver cancer specific gene

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>