Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify new Gene Involved in the Development of Liver Cancer

20.04.2010
Virginia Commonwealth University researchers have identified a new tumor-promoting gene that may play a key role in the development of liver cancer. Levels of the gene’s expression are significantly higher in more than 90 percent of patients with the disease compared to their healthy counterparts.

Researchers at the Virginia Commonwealth University Massey Cancer Center and the VCU Institute of Molecular Medicine hope the findings could lead to an effective therapy to target and inhibit the expression of this gene and result in inhibition of cancer growth.

Hepatocellular carcinoma, HCC, or liver cancer, is the fifth most common cancer and the third leading cause of cancer deaths in the world. Treatment options for HCC include chemotherapy, chemoembolization, ablation and proton-beam therapy. Liver transplantation offers the best chance for a cure in patients with small tumors and significant associated liver disease.

In the study published online the week of April 19 in the Early Edition of the journal Proceedings of the National Academy of Sciences, researchers employing a series of molecular studies identified the new oncogene called LSF, and observed that LSF levels are significantly higher in HCC patients compared to healthy individuals.

Further, the team found that LSF plays an important role in the development and progression of HCC, and that inhibiting LSF can reverse the aggressive properties of human liver cancer cells. They have also identified the molecular mechanism by which LSF promotes the growth of tumors.

“Researchers have been studying the role of LSF for more than 25 years in fields outside of cancer, but our work is the first demonstration that LSF plays an important role in HCC,” said principal investigator Devanand Sarkar, Ph.D., MBBS, assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine, and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center and a member of the VCU Institute of Molecular Medicine.

“We show a novel mechanism of HCC development by LSF that provides us with fresh insight into the complex etiology and mechanism of carcinogenesis process. Because LSF is increased in such a high percentage of patients, it could be a potential target for therapeutic intervention,” he said.

According to Sarkar, LSF is a transcription factor, which means it can directly regulate the expression of genes. The team has identified specific genes, such as osteopontin, that are directly induced by LSF.

“Osteopontin is a key player in regulating tumor development and progression and the identification of a master regulator of osteopontin, such as LSF, is a very important discovery,” said Sarkar.

The team is currently testing small molecule inhibitors of LSF as a possible therapy for HCC in animal models.

“Analysis of LSF level in biopsy material may one day be used as a prognostic marker for HCC. Clinicians may be able to design treatment strategies based on the LSF level of a patient. For example, a patient with higher LSF level will respond more to LSF inhibitors. Newer combinatorial strategies can be developed incorporating LSF inhibition in one arm,” he said.

This work was supported in part by grants from the Goldhirsh Foundation, the Dana Foundation, the National Institutes of Health, the Samuel Waxman Cancer Research Foundation, National Institute of Environmental Health and the Liver Tissue Cell Distribution System.

About the VCU Massey Cancer Center
The VCU Massey CancerCenter is one of 65 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.
About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

Further reports about: Cancer End User Development HCC LSF VCU cancer research health services liver liver cancer specific gene

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>