Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify new Gene Involved in the Development of Liver Cancer

Virginia Commonwealth University researchers have identified a new tumor-promoting gene that may play a key role in the development of liver cancer. Levels of the gene’s expression are significantly higher in more than 90 percent of patients with the disease compared to their healthy counterparts.

Researchers at the Virginia Commonwealth University Massey Cancer Center and the VCU Institute of Molecular Medicine hope the findings could lead to an effective therapy to target and inhibit the expression of this gene and result in inhibition of cancer growth.

Hepatocellular carcinoma, HCC, or liver cancer, is the fifth most common cancer and the third leading cause of cancer deaths in the world. Treatment options for HCC include chemotherapy, chemoembolization, ablation and proton-beam therapy. Liver transplantation offers the best chance for a cure in patients with small tumors and significant associated liver disease.

In the study published online the week of April 19 in the Early Edition of the journal Proceedings of the National Academy of Sciences, researchers employing a series of molecular studies identified the new oncogene called LSF, and observed that LSF levels are significantly higher in HCC patients compared to healthy individuals.

Further, the team found that LSF plays an important role in the development and progression of HCC, and that inhibiting LSF can reverse the aggressive properties of human liver cancer cells. They have also identified the molecular mechanism by which LSF promotes the growth of tumors.

“Researchers have been studying the role of LSF for more than 25 years in fields outside of cancer, but our work is the first demonstration that LSF plays an important role in HCC,” said principal investigator Devanand Sarkar, Ph.D., MBBS, assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine, and Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center and a member of the VCU Institute of Molecular Medicine.

“We show a novel mechanism of HCC development by LSF that provides us with fresh insight into the complex etiology and mechanism of carcinogenesis process. Because LSF is increased in such a high percentage of patients, it could be a potential target for therapeutic intervention,” he said.

According to Sarkar, LSF is a transcription factor, which means it can directly regulate the expression of genes. The team has identified specific genes, such as osteopontin, that are directly induced by LSF.

“Osteopontin is a key player in regulating tumor development and progression and the identification of a master regulator of osteopontin, such as LSF, is a very important discovery,” said Sarkar.

The team is currently testing small molecule inhibitors of LSF as a possible therapy for HCC in animal models.

“Analysis of LSF level in biopsy material may one day be used as a prognostic marker for HCC. Clinicians may be able to design treatment strategies based on the LSF level of a patient. For example, a patient with higher LSF level will respond more to LSF inhibitors. Newer combinatorial strategies can be developed incorporating LSF inhibition in one arm,” he said.

This work was supported in part by grants from the Goldhirsh Foundation, the Dana Foundation, the National Institutes of Health, the Samuel Waxman Cancer Research Foundation, National Institute of Environmental Health and the Liver Tissue Cell Distribution System.

About the VCU Massey Cancer Center
The VCU Massey CancerCenter is one of 65 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at or call 1-877-4-MASSEY.
About VCU and the VCU Medical Center
Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see

Sathya Achia Abraham | EurekAlert!
Further information:

Further reports about: Cancer End User Development HCC LSF VCU cancer research health services liver liver cancer specific gene

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>