Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new function for protein missing in Duchenne muscular dystrophy

05.08.2009
Findings will hopefully lead to therapies to combat the disease

Researchers at the University of Minnesota and National Institutes of Health have identified a new function for the protein missing in people with the most common and ultimately lethal form of childhood muscular dystrophy.

Patients with Duchenne muscular dystrophy lack the protein dystrophin, which causes their muscles to become weak and eventually die. Since its discovery in 1987, research has shown that dystrophin protects muscle cells by directly connecting to two of the three filament types that give cells their shape and durability.

The new study demonstrates that dystrophin also directly links to the third structural filament type named microtubules. Microtubules form a highly ordered lattice in muscle, and the new study finds that microtubules become disorganized when dystrophin is missing.

"It's remarkable that scientists have been intensively studying dystrophin for more than 20 years, yet we continue to identify new features that better define its important contribution to healthy muscle." said James Ervasti, Ph.D., a professor in the Department of Biochemistry, Molecular Biology & Biophysics, who directed the investigation.

The new findings suggest that loss of microtubule organization might contribute to the devastating symptoms of Duchenne muscular dystrophy, information that will hopefully lead to the development of therapies to combat the disease. The study appears online Aug. 3, 2009 and will be published in the Aug. 10 issue of The Journal of Cell Biology.

The research was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases.

Patty Mattern | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>