Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify New Function of Protein in Cellular Respiration

30.01.2009
Virginia Commonwealth University researchers have found that the protein Stat3 plays a key role in regulating mitochondria, the energy-producing machines of cells. This discovery could one day lead to the development of new treatments for heart disease to boost energy in failing heart muscle or to master the abnormal metabolism of cancer.

In the study, published online Jan. 8 in Science Express, researchers reported that Stat3, a protein previously known to control the activity of genes by acting in the cell nucleus, also plays a key role in cellular energy production.

The team examined oxygen consumption in cultured cells and hearts of mice. They discovered that when Stat 3 protein was missing, cells consumed less oxygen and produced less ATP, the key molecular form of cellular energy. The findings revealed that Stat3 is necessary for the function of the mitochondrial electron transport chain that generates ATP. Changes in energy production and expenditure are essential to maintain cellular homeostasis.

“We found evidence that Stat3 is present in the mitochondria and that it serves to control the production of ATP,” said principal investigator Andrew C. Larner, M.D., Ph.D., professor of biochemistry and molecular biology in the VCU School of Medicine, and co-leader of the Immune Mechanisms research program at the VCU Massey Cancer Center.

“We have described a new pathway by which generation of ATP is regulated. This pathway could suggest new ways for Stat3 to be therapeutically manipulated to treat a variety of diseases where there are imbalances between energy generation and energy demands such as occurs in cancer and heart disease,” he said.

Next, the team will conduct studies to determine the downstream targets of Stat3 in the mitochondria and identify the physiological role of Stat3 that is localized to the mitochondria in heart disease and cancer.

This work was supported by grants from National Institutes of Health.

Larner worked with an international team including researchers from the VCU School of Medicine; Cleveland State University; Biogen Idec Inc., The Cleveland Clinic Lerner Research Institute, Indiana School of Medicine, Case Western Reserve University, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Jagiellonian University in Krakow, Poland, and the University of Hyderabad in Hyderabad, India.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>