Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify New Function of Protein in Cellular Respiration

30.01.2009
Virginia Commonwealth University researchers have found that the protein Stat3 plays a key role in regulating mitochondria, the energy-producing machines of cells. This discovery could one day lead to the development of new treatments for heart disease to boost energy in failing heart muscle or to master the abnormal metabolism of cancer.

In the study, published online Jan. 8 in Science Express, researchers reported that Stat3, a protein previously known to control the activity of genes by acting in the cell nucleus, also plays a key role in cellular energy production.

The team examined oxygen consumption in cultured cells and hearts of mice. They discovered that when Stat 3 protein was missing, cells consumed less oxygen and produced less ATP, the key molecular form of cellular energy. The findings revealed that Stat3 is necessary for the function of the mitochondrial electron transport chain that generates ATP. Changes in energy production and expenditure are essential to maintain cellular homeostasis.

“We found evidence that Stat3 is present in the mitochondria and that it serves to control the production of ATP,” said principal investigator Andrew C. Larner, M.D., Ph.D., professor of biochemistry and molecular biology in the VCU School of Medicine, and co-leader of the Immune Mechanisms research program at the VCU Massey Cancer Center.

“We have described a new pathway by which generation of ATP is regulated. This pathway could suggest new ways for Stat3 to be therapeutically manipulated to treat a variety of diseases where there are imbalances between energy generation and energy demands such as occurs in cancer and heart disease,” he said.

Next, the team will conduct studies to determine the downstream targets of Stat3 in the mitochondria and identify the physiological role of Stat3 that is localized to the mitochondria in heart disease and cancer.

This work was supported by grants from National Institutes of Health.

Larner worked with an international team including researchers from the VCU School of Medicine; Cleveland State University; Biogen Idec Inc., The Cleveland Clinic Lerner Research Institute, Indiana School of Medicine, Case Western Reserve University, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Jagiellonian University in Krakow, Poland, and the University of Hyderabad in Hyderabad, India.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>