Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify New Function of Protein in Cellular Respiration

30.01.2009
Virginia Commonwealth University researchers have found that the protein Stat3 plays a key role in regulating mitochondria, the energy-producing machines of cells. This discovery could one day lead to the development of new treatments for heart disease to boost energy in failing heart muscle or to master the abnormal metabolism of cancer.

In the study, published online Jan. 8 in Science Express, researchers reported that Stat3, a protein previously known to control the activity of genes by acting in the cell nucleus, also plays a key role in cellular energy production.

The team examined oxygen consumption in cultured cells and hearts of mice. They discovered that when Stat 3 protein was missing, cells consumed less oxygen and produced less ATP, the key molecular form of cellular energy. The findings revealed that Stat3 is necessary for the function of the mitochondrial electron transport chain that generates ATP. Changes in energy production and expenditure are essential to maintain cellular homeostasis.

“We found evidence that Stat3 is present in the mitochondria and that it serves to control the production of ATP,” said principal investigator Andrew C. Larner, M.D., Ph.D., professor of biochemistry and molecular biology in the VCU School of Medicine, and co-leader of the Immune Mechanisms research program at the VCU Massey Cancer Center.

“We have described a new pathway by which generation of ATP is regulated. This pathway could suggest new ways for Stat3 to be therapeutically manipulated to treat a variety of diseases where there are imbalances between energy generation and energy demands such as occurs in cancer and heart disease,” he said.

Next, the team will conduct studies to determine the downstream targets of Stat3 in the mitochondria and identify the physiological role of Stat3 that is localized to the mitochondria in heart disease and cancer.

This work was supported by grants from National Institutes of Health.

Larner worked with an international team including researchers from the VCU School of Medicine; Cleveland State University; Biogen Idec Inc., The Cleveland Clinic Lerner Research Institute, Indiana School of Medicine, Case Western Reserve University, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Jagiellonian University in Krakow, Poland, and the University of Hyderabad in Hyderabad, India.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>