Researchers identify factors behind blood-making stem cells

A team of researchers from the Institute for Research in Immunology and Cancer (IRIC) of the University of Montreal have made significant progress in the understanding of blood-producing (hematopoietic) stem cells.

The study led by IRIC Chief Executive Officer and Scientific Director, Dr. Guy Sauvageau, identifies factors that control the production of hematopoietic stem cells. Published in the journal Cell Stem Cell, the research offers interesting insight critical to the development of novel regenerative therapies and treatments for leukemia.

Hematopoietic stem cells (HSCs) are located within the bone marrow and serve as a reservoir for the production of all blood cells. A disruption in this process can have dire consequences leading either to a depleted blood cell population which can cause severe immune deficiencies, or excessive proliferation of blood cells which can trigger the development of leukemia. At the moment, relatively little is known about what controls this production.

The current study aims to understand the roles of various proteins that are present in HSCs and their impact on blood production. Researchers found that three proteins (Msi2, Pard6a and Prkcz) help blood cells to regenerate. That is, when HSCs lack these proteins, blood cells have a reduced capacity to regenerate themselves. Results from a fourth protein, Prox1, showed the reverse effect: their presence hinders the reproduction of blood cells.

“Understanding which proteins control the production of blood-making stem cells is crucial knowledge for designing therapies for diseases caused by unruly HSCs” explains Dr. Sauvageau, “Now that we recognize the key roles that these proteins play, we can evaluate their potential as therapeutic targets to treat a variety of diseases such as leukemia.”

Researcher & Financing

Dr. Guy Sauvageau holds the Canada Research Chair in the Molecular Genetics of Normal and Cancer Cells. The research received funding from the Canadian Institutes for Health Research.

Paper cited

Kristin J. Hope, Sonia Cellot, Stephen B. Ting, Tara MacRae, Nadine Mayotte, Norman N. Iscove, and Guy Sauvageau. An RNAi Screen Identifies Msi2 and Prox1 as Having Opposite Roles in the Regulation of Hematopoietic Stem Cell Activity. Cell Stem Cell, Volume: 7; Issue: 1; Manuscript: 682; DOI: 10.1016

On the Web:

IRIC: www.iric.ca
Cell Stem Cell: http://www.cell.com/cell-stem-cell/
Canada Research Chair in the Molecular Genetics of Normal and Cancer Cells: http://www.chairs-chaires.gc.ca/chairholders-titulaires/profile-fra.aspx?profileId=1284
Canadian Institutes for Health Research : http://www.cihr.ca/f/193.html
University of Montreal: www.umontreal.ca/english
Media contact:
Carolyne Lord
Communications and Public Relations Office
Institute for Research in Immunology and Cancer
Telephone: 514 343-7282
Email: carolyne.lord@umontreal.ca

Media Contact

Carolyne Lord EurekAlert!

More Information:

http://www.umontreal.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors