Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify factors behind blood-making stem cells

07.07.2010
Potential therapeutic targets to treat a variety of diseases including leukemia

A team of researchers from the Institute for Research in Immunology and Cancer (IRIC) of the University of Montreal have made significant progress in the understanding of blood-producing (hematopoietic) stem cells.

The study led by IRIC Chief Executive Officer and Scientific Director, Dr. Guy Sauvageau, identifies factors that control the production of hematopoietic stem cells. Published in the journal Cell Stem Cell, the research offers interesting insight critical to the development of novel regenerative therapies and treatments for leukemia.

Hematopoietic stem cells (HSCs) are located within the bone marrow and serve as a reservoir for the production of all blood cells. A disruption in this process can have dire consequences leading either to a depleted blood cell population which can cause severe immune deficiencies, or excessive proliferation of blood cells which can trigger the development of leukemia. At the moment, relatively little is known about what controls this production.

The current study aims to understand the roles of various proteins that are present in HSCs and their impact on blood production. Researchers found that three proteins (Msi2, Pard6a and Prkcz) help blood cells to regenerate. That is, when HSCs lack these proteins, blood cells have a reduced capacity to regenerate themselves. Results from a fourth protein, Prox1, showed the reverse effect: their presence hinders the reproduction of blood cells.

"Understanding which proteins control the production of blood-making stem cells is crucial knowledge for designing therapies for diseases caused by unruly HSCs" explains Dr. Sauvageau, "Now that we recognize the key roles that these proteins play, we can evaluate their potential as therapeutic targets to treat a variety of diseases such as leukemia."

Researcher & Financing

Dr. Guy Sauvageau holds the Canada Research Chair in the Molecular Genetics of Normal and Cancer Cells. The research received funding from the Canadian Institutes for Health Research.

Paper cited

Kristin J. Hope, Sonia Cellot, Stephen B. Ting, Tara MacRae, Nadine Mayotte, Norman N. Iscove, and Guy Sauvageau. An RNAi Screen Identifies Msi2 and Prox1 as Having Opposite Roles in the Regulation of Hematopoietic Stem Cell Activity. Cell Stem Cell, Volume: 7; Issue: 1; Manuscript: 682; DOI: 10.1016

On the Web:

IRIC: www.iric.ca
Cell Stem Cell: http://www.cell.com/cell-stem-cell/
Canada Research Chair in the Molecular Genetics of Normal and Cancer Cells: http://www.chairs-chaires.gc.ca/chairholders-titulaires/profile-fra.aspx?profileId=1284
Canadian Institutes for Health Research : http://www.cihr.ca/f/193.html
University of Montreal: www.umontreal.ca/english
Media contact:
Carolyne Lord
Communications and Public Relations Office
Institute for Research in Immunology and Cancer
Telephone: 514 343-7282
Email: carolyne.lord@umontreal.ca

Carolyne Lord | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>