Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify and block protein that interferes with appetite-suppressing hormone

Ever since the appetite-regulation hormone called leptin was discovered in 1994, scientists have sought to understand the mechanisms that control its action.

It was known that leptin was made by fat cells, reduced appetite and interacted with insulin , but the precise molecular details of its function —details that might enable the creation of a new treatment for obesity — remained elusive.

Now, University of Texas Medical Branch at Galveston researchers have revealed a significant part of one of those mechanisms, identifying a protein that can interfere with the brain's response to leptin. They've also created a compound that blocks the protein's action — a potential forerunner to an anti-obesity drug.

In experiments with mice fed a high-fat diet, scientists from UTMB and the University of California, San Diego explored the role of the protein, known as Epac1, in blocking leptin's activity in the brain. They found that mice genetically engineered to be unable to produce Epac1 had lower body weights, lower body fat percentages, lower blood-plasma leptin levels and better glucose tolerance than normal mice.

When the researchers used a specially developed "Epac inhibitor" to treat brain-slice cultures taken from normal laboratory mice, they found elevated levels of proteins associated with greater leptin sensitivity. Similar results were seen in the genetically engineered mice that lacked the Epac1 gene. In addition, normal mice treated with the inhibitor had significantly lower levels of leptin in their blood plasma — an indication that Epac1 also affected their leptin levels.

"We found that we can increase leptin sensitivity by creating mice that lack the genes for Epac1 or through a pharmacological intervention with our Epac inhibitor," said UTMB professor Xiaodong Cheng, lead author of a paper on the study that recently appeared on the cover of Molecular and Cellular Biology, available on the journal's Web site at "The knockout mice gave us a way to tease out the function of the protein, and the inhibitor served as a pharmacological probe that allowed us to manipulate these molecules in the cells."

Cheng and his colleagues suspected a connection between Epac1 and leptin because Epac1 is activated by cyclic AMP, a signaling molecule linked to metabolism and leptin production and secretion. Cyclic AMP is tied to a multitude of other cell signaling processes, many of which are targeted by current drugs. Cheng believes that understanding how it acts through Epac1 (and another form of the protein called Epac2) will also generate new pharmaceutical possibilities — possibly including a drug therapy that will help fight obesity and diabetes.

"We refer to these Epac inhibitors as pharmacological probes, and while they are still far away from drugs, pharmaceutical intervention is always our eventual goal," Cheng said. "We were the first to develop Epac inhibitors, and now we're working very actively with Dr. Jia Zhou, a UTMB medicinal chemist, to modify them and improve their properties. In addition, we are collaborating with colleagues at the NIH National Center for Advancing Translational Sciences in searching for more potent and selective pharmacological probes for Epac proteins."

Other authors of the Molecular and Cellular Biology paper include research associates Jingbo Yan, Jingna Wei and Sonja Stutz, research scientists Fang C. Mei and Igor Patrikeev, graduate assistant Yaohua Hu, visiting physician Dapeng Hao, professors Massoud Motamedi and Kathryn A. Cunningham, associate professor Kelly T. Dineley and assistant professor Jonathan D. Hommel, all from UTMB. Authors from the University of California, San Diego include postdoctoral fellows Hongqiang Cheng and Dieu Hung Lao, and professor Ju Chen. This research was supported by the National Institute of General Medical Sciences.

Jim Kelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>