Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify biomarkers of poor outcomes in preemies

28.01.2011
Researchers at Cincinnati Children's Hospital Medical Center have identified biomarkers of poor outcomes in preterm infants that may help identify new approaches to prevention.

Ardythe Morrow, PhD, a researcher at the Cincinnati Children's Perinatal Institute, has identified a polymorphism – a variant in a particular DNA sequence – in a gene important to the development of the immune system. She found that this polymorphism raises the risk of bad outcomes in preterm infants, including death; necrotizing enterocolitis, which is the death of intestinal tissue; and gram negative sepsis, an overwhelming infection.

The study is published online in the Journal of Pediatrics.

"The secretor gene (FUT2) controls secretion of a substance known as 'H antigen' in saliva, urine, plasma, and other body fluids. Our data suggest that H antigen may be important to the health of preterm infants," says Dr. Morrow. "Research is continuing to better understand the impact of FUT2 in prematurity and should provide important insights into disease progression and infant vulnerability. We speculate these high risk infants may especially benefit from human milk oligosaccharide, a complex carboyhydrate made by enzymes of the FUT2 gene."

Dr. Morrow and her colleagues collected saliva samples from 410 infants born at or before 32 weeks gestational age. Among these infants, 26 died, 30 had necrotizing enterocolitis and 96 had confirmed sepsis.

Death occurred in 15 percent of 135 infants with low H antigen in their saliva, compared to 2 percent of 248 infants with high levels of H antigen in saliva. Low H antigen was also associated with greater odds of death due to necrotizing enterocolitis and sepsis, as well as higher odds of necrotizing enterocolitis. In addition, no secretion of H antigen predicted gram negative sepsis.

Dr. Morrow and her colleagues at Cincinnati Children's are now analyzing national data and tissue samples for a new study designed to test the role of intestinal colonization in preterm infants in relation to their FUT2 genotype. Other studies are underway to test the role of specific oligosaccharides (complex carbohydrates) in human milk in disease prevention.

The study was funded by grants from the National Institute of Child Health and Human Development and the National Institute of Diabetes and Digestive and Kidney Disorders.

Jim Feuer | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>