Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new anti-tumor gene

18.12.2008
Findings may one day lead to an effective and efficient gene therapy for cancer

Researchers from Virginia Commonwealth University have identified a new anti-tumor gene called SARI that can interact with and suppress a key protein that is overexpressed in 90 percent of human cancers. The discovery could one day lead to an effective gene therapy for cancer.

According to Paul B. Fisher, M.Ph., Ph.D., professor and chair of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine, and lead investigator of the study, this novel gene highlights a previously unrecognized molecular pathway underlying the anti-tumor action of interferon, INF.

In the study, published online in the Dec. 8 issue of the Proceedings of the National Academy of Sciences, researchers report the discovery of a new gene named SARI, which was uncovered by a powerful technique pioneered in the Fisher laboratory known as subtraction hybridization. SARI, which is induced by a potent immune system modulator called interferon, was found to suppress growth and survival of tumor cells by interfering with the action of cancer cell molecules that drive cell division and promote survival.

The investigators delivered SARI to cancer cells using a virus and the infected cancer cells subsequently stopped dividing and died. Since 90 percent of all cancer types rely on a similar mechanism to proliferate and evade destruction, Fisher noted that SARI could be an effective anti-cancer treatment for many tumors.

"Additionally, IFNs are powerful immune modulating agents that contribute to the immune response to cancer and they are effective inhibitors of new blood vessel formation, the process of angiogenesis, which is obligatory for the growth of both primary and metastatic cancers," said Fisher, who is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research with the VCU Massey Cancer Center.

Currently, IFNs are relevant in the clinical treatment of a number of solid tumors and hematological malignancies, such as melanoma, renal cell carcinoma, malignant glioma, lymphomas and leukemias, either as a monotherapy or as an adjuvant to chemotherapy of radiotherapy.

"We have uncovered a new way by which interferon can induce anti-tumor activity. The identification of SARI also provides a new potential reagent for the selective killing of tumor cells," said Fisher.

"The present study indicates that interferon can suppress cancer growth by inhibiting expression of a cancer-dependent transcription factor that controls genes that regulate cancer cell growth. The SARI gene may provide novel and selective gene therapy applications for cancer. It could also prove amenable for inhibiting proliferative disorders that depend on AP-1 activity," he said. AP-1 plays a key role in regulating proliferation and transformation of cancer cells.

The team is now developing improved approaches to more effectively target the delivery of SARI. Fisher said these studies will be crucial for exploiting the cancer-selective killing activity of this gene and enhancing its therapeutic applications.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>