Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new anti-tumor gene

18.12.2008
Findings may one day lead to an effective and efficient gene therapy for cancer

Researchers from Virginia Commonwealth University have identified a new anti-tumor gene called SARI that can interact with and suppress a key protein that is overexpressed in 90 percent of human cancers. The discovery could one day lead to an effective gene therapy for cancer.

According to Paul B. Fisher, M.Ph., Ph.D., professor and chair of the Department of Human and Molecular Genetics and director of the VCU Institute of Molecular Medicine in the VCU School of Medicine, and lead investigator of the study, this novel gene highlights a previously unrecognized molecular pathway underlying the anti-tumor action of interferon, INF.

In the study, published online in the Dec. 8 issue of the Proceedings of the National Academy of Sciences, researchers report the discovery of a new gene named SARI, which was uncovered by a powerful technique pioneered in the Fisher laboratory known as subtraction hybridization. SARI, which is induced by a potent immune system modulator called interferon, was found to suppress growth and survival of tumor cells by interfering with the action of cancer cell molecules that drive cell division and promote survival.

The investigators delivered SARI to cancer cells using a virus and the infected cancer cells subsequently stopped dividing and died. Since 90 percent of all cancer types rely on a similar mechanism to proliferate and evade destruction, Fisher noted that SARI could be an effective anti-cancer treatment for many tumors.

"Additionally, IFNs are powerful immune modulating agents that contribute to the immune response to cancer and they are effective inhibitors of new blood vessel formation, the process of angiogenesis, which is obligatory for the growth of both primary and metastatic cancers," said Fisher, who is the first incumbent of the Thelma Newmeyer Corman Endowed Chair in Cancer Research with the VCU Massey Cancer Center.

Currently, IFNs are relevant in the clinical treatment of a number of solid tumors and hematological malignancies, such as melanoma, renal cell carcinoma, malignant glioma, lymphomas and leukemias, either as a monotherapy or as an adjuvant to chemotherapy of radiotherapy.

"We have uncovered a new way by which interferon can induce anti-tumor activity. The identification of SARI also provides a new potential reagent for the selective killing of tumor cells," said Fisher.

"The present study indicates that interferon can suppress cancer growth by inhibiting expression of a cancer-dependent transcription factor that controls genes that regulate cancer cell growth. The SARI gene may provide novel and selective gene therapy applications for cancer. It could also prove amenable for inhibiting proliferative disorders that depend on AP-1 activity," he said. AP-1 plays a key role in regulating proliferation and transformation of cancer cells.

The team is now developing improved approaches to more effectively target the delivery of SARI. Fisher said these studies will be crucial for exploiting the cancer-selective killing activity of this gene and enhancing its therapeutic applications.

Sathya Achia Abraham | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>