Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify ancient ancestor of tulip tree line

12.09.2013
The modern-day tulip tree, state tree of Indiana as well as Kentucky and Tennessee, can trace its lineage back to the time of the dinosaurs, according to newly published research by an Indiana University paleobotanist and a Russian botanist.

The tulip tree, Liriodendron tulipfera, has been considered part of the magnolia family. But David Dilcher of Indiana University Bloomington and Mikhail S. Romanov of the N.V. Tsitsin Main Botanical Garden in Moscow show that it is closely related to fossil plant specimens from the Lower Cretaceous period.


This is an artist's reconstruction of Archaeanthus from fossils.
Credit: Courtesy David Dilcher

Their findings suggest the tulip tree line diverged from magnolias more than 100 million years ago and constitutes an independent family, Liriodendraceae, with two living species: one in the Eastern United States and the other in Eastern China. The article, "Fruit structure in Magnoliaceae s.l. and Archaeanthus and their relationships," appears in the most recent issue of the American Journal of Botany.

The tulip tree, sometimes called tulip poplar or yellow poplar, is one of the largest trees of Eastern North America, sometimes reaching more than 150 feet in height. It is native from southern New England westward to Michigan and south to Louisiana and Florida.

Dilcher, an IU professor emeritus of geological sciences and biology in the College of Arts and Sciences, discovered fossil flowers and fruits resembling those of magnolias and tulip trees in 1975 in Kansas. Dilcher and Peter Crane, now the dean of the School of Forestry and Environmental Studies at Yale University, published information about the fossils and named the plant Archaeanthus.

But the relationship between the fossils and any living plant species remained a mystery until Dilcher met and began working with Romanov, who specializes in study of the magnolia family and its relatives. The researchers used advanced technologies of light, scanning electron and polarizing microscopy to develop a more detailed picture of the Archaeanthus flowers, fruits and seeds and compare them with the flowers, fruits and seeds of contemporary plants.

"We discovered features of the fruits and seeds, not previously detailed, that were more similar to those of the tulip tree line of evolution than to the magnolias," Dilcher said. "Thus the beautiful tulip tree has a lineage that extends back to the age of the dinosaurs. It has a long, independent history separate from the magnolias and should be recognized as its own flowering plant family."

While the paper provides new insight into the evolution of the tulip tree line, questions remain, Dilcher said. Scientists don't know how widespread and various the early members of the tulip tree line may have been, for example. Fossils similar to Archaeanthus have been found in the Southeastern United States. Were there other similar plants, and where did they develop?

Further, the fact that the tulip tree family has survived and evolved for more than 100 million years -- albeit in limited and widely divergent ranges -- is relevant to understanding how species have developed in the past and how they might fare in the future given changing climate and other factors.

Steve Hinnefeld | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>