Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify ancient ancestor of tulip tree line

The modern-day tulip tree, state tree of Indiana as well as Kentucky and Tennessee, can trace its lineage back to the time of the dinosaurs, according to newly published research by an Indiana University paleobotanist and a Russian botanist.

The tulip tree, Liriodendron tulipfera, has been considered part of the magnolia family. But David Dilcher of Indiana University Bloomington and Mikhail S. Romanov of the N.V. Tsitsin Main Botanical Garden in Moscow show that it is closely related to fossil plant specimens from the Lower Cretaceous period.

This is an artist's reconstruction of Archaeanthus from fossils.
Credit: Courtesy David Dilcher

Their findings suggest the tulip tree line diverged from magnolias more than 100 million years ago and constitutes an independent family, Liriodendraceae, with two living species: one in the Eastern United States and the other in Eastern China. The article, "Fruit structure in Magnoliaceae s.l. and Archaeanthus and their relationships," appears in the most recent issue of the American Journal of Botany.

The tulip tree, sometimes called tulip poplar or yellow poplar, is one of the largest trees of Eastern North America, sometimes reaching more than 150 feet in height. It is native from southern New England westward to Michigan and south to Louisiana and Florida.

Dilcher, an IU professor emeritus of geological sciences and biology in the College of Arts and Sciences, discovered fossil flowers and fruits resembling those of magnolias and tulip trees in 1975 in Kansas. Dilcher and Peter Crane, now the dean of the School of Forestry and Environmental Studies at Yale University, published information about the fossils and named the plant Archaeanthus.

But the relationship between the fossils and any living plant species remained a mystery until Dilcher met and began working with Romanov, who specializes in study of the magnolia family and its relatives. The researchers used advanced technologies of light, scanning electron and polarizing microscopy to develop a more detailed picture of the Archaeanthus flowers, fruits and seeds and compare them with the flowers, fruits and seeds of contemporary plants.

"We discovered features of the fruits and seeds, not previously detailed, that were more similar to those of the tulip tree line of evolution than to the magnolias," Dilcher said. "Thus the beautiful tulip tree has a lineage that extends back to the age of the dinosaurs. It has a long, independent history separate from the magnolias and should be recognized as its own flowering plant family."

While the paper provides new insight into the evolution of the tulip tree line, questions remain, Dilcher said. Scientists don't know how widespread and various the early members of the tulip tree line may have been, for example. Fossils similar to Archaeanthus have been found in the Southeastern United States. Were there other similar plants, and where did they develop?

Further, the fact that the tulip tree family has survived and evolved for more than 100 million years -- albeit in limited and widely divergent ranges -- is relevant to understanding how species have developed in the past and how they might fare in the future given changing climate and other factors.

Steve Hinnefeld | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>