Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify ancient ancestor of tulip tree line

12.09.2013
The modern-day tulip tree, state tree of Indiana as well as Kentucky and Tennessee, can trace its lineage back to the time of the dinosaurs, according to newly published research by an Indiana University paleobotanist and a Russian botanist.

The tulip tree, Liriodendron tulipfera, has been considered part of the magnolia family. But David Dilcher of Indiana University Bloomington and Mikhail S. Romanov of the N.V. Tsitsin Main Botanical Garden in Moscow show that it is closely related to fossil plant specimens from the Lower Cretaceous period.


This is an artist's reconstruction of Archaeanthus from fossils.
Credit: Courtesy David Dilcher

Their findings suggest the tulip tree line diverged from magnolias more than 100 million years ago and constitutes an independent family, Liriodendraceae, with two living species: one in the Eastern United States and the other in Eastern China. The article, "Fruit structure in Magnoliaceae s.l. and Archaeanthus and their relationships," appears in the most recent issue of the American Journal of Botany.

The tulip tree, sometimes called tulip poplar or yellow poplar, is one of the largest trees of Eastern North America, sometimes reaching more than 150 feet in height. It is native from southern New England westward to Michigan and south to Louisiana and Florida.

Dilcher, an IU professor emeritus of geological sciences and biology in the College of Arts and Sciences, discovered fossil flowers and fruits resembling those of magnolias and tulip trees in 1975 in Kansas. Dilcher and Peter Crane, now the dean of the School of Forestry and Environmental Studies at Yale University, published information about the fossils and named the plant Archaeanthus.

But the relationship between the fossils and any living plant species remained a mystery until Dilcher met and began working with Romanov, who specializes in study of the magnolia family and its relatives. The researchers used advanced technologies of light, scanning electron and polarizing microscopy to develop a more detailed picture of the Archaeanthus flowers, fruits and seeds and compare them with the flowers, fruits and seeds of contemporary plants.

"We discovered features of the fruits and seeds, not previously detailed, that were more similar to those of the tulip tree line of evolution than to the magnolias," Dilcher said. "Thus the beautiful tulip tree has a lineage that extends back to the age of the dinosaurs. It has a long, independent history separate from the magnolias and should be recognized as its own flowering plant family."

While the paper provides new insight into the evolution of the tulip tree line, questions remain, Dilcher said. Scientists don't know how widespread and various the early members of the tulip tree line may have been, for example. Fossils similar to Archaeanthus have been found in the Southeastern United States. Were there other similar plants, and where did they develop?

Further, the fact that the tulip tree family has survived and evolved for more than 100 million years -- albeit in limited and widely divergent ranges -- is relevant to understanding how species have developed in the past and how they might fare in the future given changing climate and other factors.

Steve Hinnefeld | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>