Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify Achilles heel of dengue virus, target for future vaccines

12.04.2012
A team of scientists from the University of North Carolina at Chapel Hill and Vanderbilt University have pinpointed the region on dengue virus that is neutralized in people who overcome infection with the deadly pathogen.

The results challenge the current state of dengue vaccine research, which is based on studies in mice and targets a different region of the virus.

"In the past researchers have relied on mouse studies to understand how the immune system kills dengue virus and assumed that the mouse studies would apply to people as well," said senior study author Aravinda M. de Silva, PhD, associate professor of microbiology and immunology at the UNC School of Medicine.

"Our study for the first time shows what region the immune system of humans target when they are fighting off the virus. The region on the virus targeted by the human immune system is quite different from the region targeted by mice."

The new research, which will appear online during the week of April 11-14, 2012 in the Proceedings of the National Academy of Sciences, was performed using blood cells from local travelers infected with dengue virus.

The global incidence of dengue has grown dramatically in recent decades, putting about half of the world's population at risk. Creation of a vaccine is complicated by the fact that there are four distinct, but closely related forms of the virus that cause dengue. Once people have recovered from infection with one form of the virus, they have lifelong immunity against that form.

But if they become infected with one of the other three forms of the virus, they increase their chances of developing the severe bleeding and sometimes fatal dengue hemorrhagic fever and dengue shock syndrome. The leading theory to explain why some people develop dengue hemorrhagic fever is that under some conditions the human immune response can actually enhance the virus and disease during a second infection.

"This is a huge issue for vaccine development," said lead study author Ruklanthi de Alwis, a graduate student in de Silva's lab. "We have to figure out a way to develop dengue vaccines that induce the good response that protects against infection, at the same time avoiding the bad response that enhances disease."

de Alwis looked at a particular subset of the immune response – specialized molecules called antibodies. UNC investigators identified 7 local individuals who had contracted dengue during travel to an endemic region and sent blood cells from these individuals to Vanderbilt School of Medicine. Drs. Scott Smith and James Crowe at Vanderbilt were able to isolate dengue antibodies from these cells for further study at UNC. The team found that instead of binding to small fragments of the virus -- like mouse antibodies do -- human antibodies that neutralized the virus bound to a complex structure that was only present on a completely assembled dengue virus.

"Though this is the first time this phenomenon has been shown with dengue, just last year there were a number of studies showing that antibodies recognize similar complex epitopes in both HIV and West Nile Virus," said de Alwis. "New vaccines as well as those already in the pipeline will need to be assessed to see if they bind just a small fragment or the whole virus, which may determine whether or not they work in humans."

The research was funded by the National Institute of Allergy and Infectious Diseases, the Southeastern Regional Center for Biodefense and Emerging Infections and a Pediatric Dengue Vaccine Initiative Targeted Research Grant.

Study co-authors from UNC were Nicholas P. Olivarez; William B. Messer; Jeremy P. Huynh; M. P. B. Wahala; and Ralph S. Baric

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>