Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify a New Mechanism of TB Drug Resistance

13.06.2013
Pyrazinamide (PZA)—a frontline tuberculosis (TB) drug—kills dormant persister bacteria and plays a critical role in shortening TB therapy. PZA is used for treating both drug susceptible and multi-drug resistant TB (MDR-TB) but resistance to PZA occurs frequently and can compromise treatment.

A recent study, led by researchers at the Johns Hopkins Bloomberg School of Public Health and Huashan Hospital, Fudan University, has identified a new mechanism for PZA-resistance, which provides new insight into the how this mysterious drug works. The study is available online June 12 in the journal Emerging Microbes and Infections.

Previously, the Johns Hopkins group identified mutations in the pncA gene and the rpsA gene as the primary causes for PZA resistance. According to the study authors, resistance to PZA is most commonly caused by mutations in the pncA gene encoding enzyme nicotinamidase/pyrazinamidase, which converts the prodrug PZA to the active form pyrazinoic acid (POA), and sometimes associated with mutations in the drug target RpsA (ribosomal protein S1). The active form of PZA, POA, interacts chemically with RpsA to block the trans-translation process, which is essential for bacterium’s survival under stress conditions.

However, for unknown reasons, some PZA-resistant TB bacteria lack mutations in pncA or rpsA. The current study suggests that mutations in the panD gene may also be involved. PanD encodes aspartate decarboxylase, which is involved in synthesis of the amino acid â-alanine, a precursor for pantothenate (which is vitamin B5) and co-enzyme A biosynthesis. The panD mutations were identified not only in mutants isolated from in vitro but also in clinical isolates such as in the naturally PZA-resistant bacterium M. canettii strain and in a PZA-resistant MDR-TB strain.

“There is significant recent interest in understanding PZA, since it is the only TB drug that cannot be replaced without compromising the efficacy of the therapy. It’s indispensible,” said Ying Zhang, MD, PhD, senior author of the study and professor in the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology. “The process of identifying the correct resistance mutations was quite tedious and took about two years to complete. However, the work led to the identification of a potential new mechanism of PZA resistance.”

While more study is needed, Zhang and his colleagues believe panD could be a potential target for new antibiotic therapies.

The study was conducted in collaboration with researchers Wenhong Zhang and Jiazhen Chen from Fudan University. The authors of “Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis” are Shuo Zhang, Jiazhen Chen, Wanliang Shi, Wei Liu, Wenhong Zhang, and Ying Zhang.

Funding for the research was provided by the National Institute for Allergy and Infectious Diseases, National Institutes of Health, and the Major Project of the Twelfth Five-Year Plan, China.

Johns Hopkins Bloomberg School of Public Health media contact: Tim Parsons at 410-955-7619 or tmparson@jhsph.edu.

Johns Hopkins Bloomberg School of Public Health
615 N. Wolfe Street, Baltimore, MD 21205
Contact Us Directions & Maps Calendars Offices &
Services Online Learning &
Courses Careers Accreditation Web Policies Feedback

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>