Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Identify a New Mechanism of TB Drug Resistance

13.06.2013
Pyrazinamide (PZA)—a frontline tuberculosis (TB) drug—kills dormant persister bacteria and plays a critical role in shortening TB therapy. PZA is used for treating both drug susceptible and multi-drug resistant TB (MDR-TB) but resistance to PZA occurs frequently and can compromise treatment.

A recent study, led by researchers at the Johns Hopkins Bloomberg School of Public Health and Huashan Hospital, Fudan University, has identified a new mechanism for PZA-resistance, which provides new insight into the how this mysterious drug works. The study is available online June 12 in the journal Emerging Microbes and Infections.

Previously, the Johns Hopkins group identified mutations in the pncA gene and the rpsA gene as the primary causes for PZA resistance. According to the study authors, resistance to PZA is most commonly caused by mutations in the pncA gene encoding enzyme nicotinamidase/pyrazinamidase, which converts the prodrug PZA to the active form pyrazinoic acid (POA), and sometimes associated with mutations in the drug target RpsA (ribosomal protein S1). The active form of PZA, POA, interacts chemically with RpsA to block the trans-translation process, which is essential for bacterium’s survival under stress conditions.

However, for unknown reasons, some PZA-resistant TB bacteria lack mutations in pncA or rpsA. The current study suggests that mutations in the panD gene may also be involved. PanD encodes aspartate decarboxylase, which is involved in synthesis of the amino acid â-alanine, a precursor for pantothenate (which is vitamin B5) and co-enzyme A biosynthesis. The panD mutations were identified not only in mutants isolated from in vitro but also in clinical isolates such as in the naturally PZA-resistant bacterium M. canettii strain and in a PZA-resistant MDR-TB strain.

“There is significant recent interest in understanding PZA, since it is the only TB drug that cannot be replaced without compromising the efficacy of the therapy. It’s indispensible,” said Ying Zhang, MD, PhD, senior author of the study and professor in the Bloomberg School’s W. Harry Feinstone Department of Molecular Microbiology and Immunology. “The process of identifying the correct resistance mutations was quite tedious and took about two years to complete. However, the work led to the identification of a potential new mechanism of PZA resistance.”

While more study is needed, Zhang and his colleagues believe panD could be a potential target for new antibiotic therapies.

The study was conducted in collaboration with researchers Wenhong Zhang and Jiazhen Chen from Fudan University. The authors of “Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis” are Shuo Zhang, Jiazhen Chen, Wanliang Shi, Wei Liu, Wenhong Zhang, and Ying Zhang.

Funding for the research was provided by the National Institute for Allergy and Infectious Diseases, National Institutes of Health, and the Major Project of the Twelfth Five-Year Plan, China.

Johns Hopkins Bloomberg School of Public Health media contact: Tim Parsons at 410-955-7619 or tmparson@jhsph.edu.

Johns Hopkins Bloomberg School of Public Health
615 N. Wolfe Street, Baltimore, MD 21205
Contact Us Directions & Maps Calendars Offices &
Services Online Learning &
Courses Careers Accreditation Web Policies Feedback

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>