Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Home In on Genetic Signature of Esophageal Cancer

19.05.2011
University of Rochester Medical Center researchers have pinpointed two genes that are amplified in the worst cases of esophageal cancer, providing data to support a new investigational treatment that targets those same genes.

The study, led by Tony Godfrey, Ph.D., a research associate professor of Surgery at the James P. Wilmot Cancer Center at URMC, was published by the journal Clinical Cancer Research. It explores the chromosomal abnormalities that influence poor survival rates of esophageal adenocarcinoma (EAC), the more common type of esophageal cancer which occurs at the junction of the stomach and esophagus.

Considered uncommon 20 years ago, the incidence of EAC has grown faster than any tumor type in the United States, Godfrey said. Health authorities believe high rates of obesity and gastroesophageal reflux disease (GERD) contribute to the rising numbers. And despite more awareness, early detection, and newer combinations of cancer therapies, overall survival of esophageal adenocarcinoma ranges from 70 percent to 80 percent for early-stage patients to only 5 percent to 20 percent for stage 3 or 4 patients. Since most cases are discovered when the cancer has already spread, EAC is often a devastating disease.

Expression of CDK6 gene in patient tissueUntil lately, the identification of gene targets for EAC had been limited by too few tissue samples and the inability of technology to provide a finely detailed map of gene mutations.

However, Godfrey’s lab was able to collect tumors samples from 116 EAC patients, and then use modern molecular analysis tools – microarray technology -- to investigate the DNA in the tissue. The goal was to study known chromosomal regions associated with EAC and look for subsets of genes involved in malignancy that might also be markers of poor survival.

Amin Ismail, Ph.D.A better understanding of genetic markers is important because many modern cancer drugs, known as “targeted therapies,” are designed to chemically inhibit or block the effect of oncogenes.

Prior studies on EAC had shown an extra copy of a DNA sequence in the 7q21 chromosome region. However, Godfrey and colleagues believe they are the first to map the region with fine enough resolution to identify six genes within the core of the amplified region, and to compare them to patient outcomes.

They further honed in on two genes, CDK6 and CDK4, and through laboratory experiments proved that both genes are critical for the growth of esophageal cancer cells.

Amin Ismail, Ph.D., the postdoctoral scientist in Godfrey’s lab who led the research, explained that the two molecules appear to do exactly the same thing, however CDK4 is located elsewhere, in the 12q13 chromosome region, and although it is less frequently amplified compared to CDK6, its high expression in EAC may be attributed to other genetic alterations.

Researchers explored the activity of CDK4 and CDK6 both independently and in combination. They paid special attention to CDK6, which also has been associated with poor survival in T-cell lymphoma and two common brain cancers, gliomas and medulloblastomas. CDK6 is a known regulator of the cell cycle, and thus researchers theorized that if they could shut down the CDK6 activity, the proliferation of cancer should also cease.

These experiments, Ismail said, led to the discovery that CDK6 is not acting completely alone, and that the combined over-expression of CDK6/4 was a more accurate marker of poor survival than the amplification of either gene alone.

Meanwhile, researchers knew that an experimental drug (known as PD-0332991) targeting CDK6/4 had been developed by Pfizer and Onyx, and was already being used in early clinical trials, showing promise against a range of cancers.

Therefore, the Wilmot research team tested PD-0332991 in the laboratory on esophageal cancer cells and discovered that, indeed, the drug halted CDK6/4 by inhibiting the entire cell-cycle process involved in malignancy.

“Our data provide direct evidence that CDK6 and CDK4 are strong predictors of poor survival, and that targeting those molecules is a viable treatment option,” Godfrey said. “Although we still have more work to do, we are excited about the excellent progress in the effort to find better treatments for esophageal cancer.”

The approach used by Godfrey and his team follows a classic example of another success story in cancer research. Decades ago scientists discovered that the protein HER-2 (human epidermal growth factor receptor 2) is frequently amplified in some breast cancers, causing them to become more aggressive. They reasoned that a drug was needed to effectively interfere with the HER-2 gene. That drug, known as Herceptin, was developed and then approved by the U.S. Food and Drug Administration in 1998 and is widely used today to boost the life expectancy of thousands of women. Interestingly, some patients with EAC also take Herceptin, due to recent studies showing that HER-2 also is over-expressed in a subset of esophageal tumors.

The National Institutes of Health funded the URMC study.

Leslie Orr | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>