Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers in Heidelberg Investigate Intracellular Transport

02.02.2012
Third funding period: over EUR 12 million from DFG for Collaborative Research Centre 638

After positive international evaluation, Heidelberg University’s Collaborative Research Centre 638 “Dynamics of Macromolecular Complexes in Biosynthetic Transport” will be continuing its work for another four years.


Model of a nuclear pore
Picture: SFB 638

The German Research Foundation (DFG) has approved funding to the tune of approx. EUR 12.4 million for this third and last funding period. The integrated research venture comprises 17 projects in which scientists from various disciplines investigate how and with what consequences large molecular complexes are transported within cells and localised to the right places.

Processes for which the operation of intracellular transport is of major significance are manifold. They include the control of an organisms’ “internal clock”. Likewise, they are crucial for the ability to produce correctly folded proteins at the right time and to make them available inside a cell or in an organism at the right location. Such mechanisms are exploited by viruses for their formation and for their transport out of infected cells. “There are many other examples of how this sector of basic research touches on medical issues,” says the coordinator of the Research Centre, Prof. Dr. Felix Wieland of Heidelberg University Biochemistry Center. “They include widespread neurodegenerative conditions like Alzheimer’s disease, in which the correct folding of proteins plays a crucial part, or hyperlipidemia, where the transport of cell surface proteins may be dysfunctional.”

Prof. Wieland emphasises that Heidelberg is internationally up among the front runners in the molecular life sciences. “The scope of the issues we are working on here enables us to employ an interdisciplinary approach within the Research Centre that is highly unusual both methodologically and in terms of content,” says Prof. Wieland. The work done so far by SFB 638, which was set up in 2004, has produced “exciting results”. One example is the description of the formation and cell-exiting mechanism of AIDS viruses, another the definition of the cell-internal location of formation of so-called flavivirus particles. The scientists have also succeeded in deciphering a general mechanism of membrane scission. In addition, they have put together substructures of the nuclear pore in the test tube, which Wieland refers to as a major advance on the road to understanding one of the most complex structures in cells.

“One fascinating aspect of this integrated research venture is that in many cases findings from our basic research have a profound relevance for important medical issues,” Prof. Wieland adds. Alongside Heidelberg University Biochemistry Center (BZH), Center for Molecular Biology (ZMBH) and Centre for Organismal Studies (COS), virological projects at the Medical Faculty Heidelberg and a research venture by the European Molecular Biology Laboratory (EMBL) are also involved in the Collaborative Research Centre “Dynamics of Macromolecular Complexes in Biosynthetic Transport”.

For more information, go to http://www.uni-heidelberg.de/zentral/bzh/sfb638.html.

Contact
Prof. Dr. Felix Wieland
Heidelberg University Biochemistry Centre
phone: +49 6221 54-4150
felix.wieland@bzh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de/zentral/bzh/sfb638.html

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>