Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers in Heidelberg Investigate Intracellular Transport

02.02.2012
Third funding period: over EUR 12 million from DFG for Collaborative Research Centre 638

After positive international evaluation, Heidelberg University’s Collaborative Research Centre 638 “Dynamics of Macromolecular Complexes in Biosynthetic Transport” will be continuing its work for another four years.


Model of a nuclear pore
Picture: SFB 638

The German Research Foundation (DFG) has approved funding to the tune of approx. EUR 12.4 million for this third and last funding period. The integrated research venture comprises 17 projects in which scientists from various disciplines investigate how and with what consequences large molecular complexes are transported within cells and localised to the right places.

Processes for which the operation of intracellular transport is of major significance are manifold. They include the control of an organisms’ “internal clock”. Likewise, they are crucial for the ability to produce correctly folded proteins at the right time and to make them available inside a cell or in an organism at the right location. Such mechanisms are exploited by viruses for their formation and for their transport out of infected cells. “There are many other examples of how this sector of basic research touches on medical issues,” says the coordinator of the Research Centre, Prof. Dr. Felix Wieland of Heidelberg University Biochemistry Center. “They include widespread neurodegenerative conditions like Alzheimer’s disease, in which the correct folding of proteins plays a crucial part, or hyperlipidemia, where the transport of cell surface proteins may be dysfunctional.”

Prof. Wieland emphasises that Heidelberg is internationally up among the front runners in the molecular life sciences. “The scope of the issues we are working on here enables us to employ an interdisciplinary approach within the Research Centre that is highly unusual both methodologically and in terms of content,” says Prof. Wieland. The work done so far by SFB 638, which was set up in 2004, has produced “exciting results”. One example is the description of the formation and cell-exiting mechanism of AIDS viruses, another the definition of the cell-internal location of formation of so-called flavivirus particles. The scientists have also succeeded in deciphering a general mechanism of membrane scission. In addition, they have put together substructures of the nuclear pore in the test tube, which Wieland refers to as a major advance on the road to understanding one of the most complex structures in cells.

“One fascinating aspect of this integrated research venture is that in many cases findings from our basic research have a profound relevance for important medical issues,” Prof. Wieland adds. Alongside Heidelberg University Biochemistry Center (BZH), Center for Molecular Biology (ZMBH) and Centre for Organismal Studies (COS), virological projects at the Medical Faculty Heidelberg and a research venture by the European Molecular Biology Laboratory (EMBL) are also involved in the Collaborative Research Centre “Dynamics of Macromolecular Complexes in Biosynthetic Transport”.

For more information, go to http://www.uni-heidelberg.de/zentral/bzh/sfb638.html.

Contact
Prof. Dr. Felix Wieland
Heidelberg University Biochemistry Centre
phone: +49 6221 54-4150
felix.wieland@bzh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de/zentral/bzh/sfb638.html

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>