Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Harvard's Wyss Institute Develop Technology to Produce Sugar from Photosynthetic Bacteria

29.06.2010
Researchers from the Wyss Institute for Biologically Inspired Engineering at Harvard and Harvard Medical School have engineered photosynthetic bacteria to produce simple sugars and lactic acid. This innovation could lead to new, environmentally friendly methods for producing commodity chemicals in bulk. Their research findings appear in the current issue of Applied and Environmental Biology.

This photosynthetic factory could also reduce the carbon dioxide emissions associated with transporting sugar globally from producing countries; lead to greater availability of biodegradable plastics; and allow capture of harmful CO2 emissions from power plants and industrial facilities.

In addition to its positive environmental impact, the technology offers potential economic advantages. Because the production methods use photosynthesis - the process by which living things are assembled using only CO2 and sunlight - the cost of making sugars, lactic acid, and other compounds would be significantly lower than traditional methods.

“What we’re doing is using genetic engineering to get organisms to act the way we want them to—in this case producing food additives,” said Wyss Institute senior staff scientist Jeffrey Way, Ph.D. “These discoveries have significant practical implications in moving toward a green economy.”

In addition to Dr. Way, researchers on this effort include Wyss Institute core faculty member Professor Pamela Silver, Ph.D., also of Harvard Medical School; and Henrike Niederholtmeyer, Bernd T. Wolfstadter, and David Savage, Ph.D., all of Harvard Medical School.

Sugar is primarily produced from sugar cane, which grows only in tropical and subtropical climates. By enabling production almost anywhere in the world, this living cellular manufacturing plant could greatly reduce the cost and emissions associated with transporting millions of tons of sugar to consumers every year. It could also expand the availability of biodegradable plastics by reducing the cost of lactic acid, a key building block in their production.

The current work by Way and Silver’s team is the latest innovation in a wide-ranging program in which the Wyss Institute is working with various partner institutions to develop environmentally sustainable ways to produce biofuels, hydrogen, and other high value chemicals and food additives.

“Our mission at the Wyss Institute is to use Nature’s design principles to create solutions in medicine, manufacturing, energy, and architecture that will lead to a more sustainable world,” said Don Ingber, Ph.D., M.D., Founding Director of the Wyss Institute. “This work is an important step in that direction.”

Contact:
Mary Tolikas
mary.tolikas@wyss.harvard.edu
The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature’s design principles to create breakthrough technologies that will revolutionize medicine, industry, and the environment. Working as an alliance among Harvard’s schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Children’s Hospital Boston, Dana Farber Cancer Institute, University of Massachusetts Medical School, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk, fundamental research that leads to transformative change. By applying biological principles, Wyss researchers are developing innovative new engineering solutions for healthcare, manufacturing, robotics, energy and sustainable architecture. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances and new startups.

Mary Tolikas | EurekAlert!
Further information:
http://www.wyss.harvard.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>