Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Look at Genes That Affect Vaccine Response

South Dakota State University livestock research is trying to determine whether the genes cattle inherit help determine the way they respond to vaccinations.

The result could be new knowledge about how to make cattle herds healthier.

Assistant professor Michael Gonda in SDSU’s Department of Animal & Range Sciences is leading that study with assistance from graduate student researcher Xin Fang. Gonda is looking at individual genes and also the genome, or the entire system of genes carrying hereditary information.

The work has implications for other species besides cattle and could also add to understanding vaccine response in humans.

“It’s often assumed that animals, and humans as well, respond uniformly to a vaccine,” Gonda said. “In reality there’s a lot of variation in vaccine response. Some animals respond very well and very robustly to the vaccine, other animals don’t respond at all.

“In fact, there is a certain fraction of the population that simply does not respond to the vaccine.

“One of the goals of my laboratory is to determine how much of the non-response to vaccines, or differences in response to vaccination, is actually controlled by genetics, by the animal’s own genes.”

Researchers are vaccinating in total about 1,500 calves over a two- to three-year period. They’re using both animals at the SDSU campus as well as at some outlying SDSU research stations such as the Cottonwood Research Station and the Antelope Research Station in western South Dakota, and the SDSU Cow Camp in Miller. In addition the study uses a beef and a dairy research herd at North Carolina State University, where some of Gonda’s collaborators work.

Scientists are vaccinating all these animals with a commercially available vaccine that protects against both types of Bovine Viral Diarrhea, or BVD. Twenty-five to 30 days later, researchers go back and measure how the animals have responded to the vaccine — whether the response is strong, moderate, low, or if they have not responded at all.

The scientists measure vaccine response by enzyme-linked immunosorbent assay, or ELISA, a technique that can detect the presence of antibodies produced by the animal’s immune system in response to the vaccination. Measuring these antibodies gives a good picture of how an animal responds to the vaccine.

“Our objective is once we get these vaccine response measurements, we want to determine — is vaccine response heritable? That means, is there a genetic component to vaccine response? And if there is, can we find any genes or any loci that are associated with vaccine response?” Gonda said. “We do have some preliminary data that suggest the vaccine response is heritable.”

If there is a genetic component to a response to vaccination for BVD, it’s possible that the same genes would be involved, no matter what vaccine is being given. And it’s at least possible that a gene found to help regulate vaccine response in cattle could play an important role in vaccine response in other species of livestock or in humans.

Gonda and his colleagues are looking specifically at polymorphisms, or regions of genes where there are differences from animal to animal. Researchers are focusing in on genes that they know are important from an immunological standpoint such as the major histocompatability complex, a genomic region important to the immune system.

They’re also studying the leptin gene, which is thought to have a role in regulating the immune system. A polymorphism within the leptin gene has already been shown to affect vaccine response to a rabies vaccine in cattle by researchers at the University of Saskatchewan.

Eventually, Gonda said, his research could look at the entire genome.

“One of the biggest applications of genomics is going to be to identify molecular markers within genomes that can be used to select for traits in livestock,” Gonda said. “One of the long-term goals of the studies that I’m doing is to identify molecular markers or genes that are associated with vaccine response so that perhaps one day livestock producers can go out, and they can select animals that have favorable marker alleles for vaccine response and make their cattle healthier.”

The South Dakota Agricultural Experiment Station is funding the research.

Jeanne Jones Manzer | Newswise Science News
Further information:

Further reports about: BvD SDSU Vaccine affect genes genetic component immune system

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>