Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers gain insight into 100-year-old Haber-Bosch process

14.11.2011
For the past 100 years, the Haber-Bosch process has been used to convert atmospheric nitrogen into ammonia, which is essential in the manufacture of fertilizer.

Despite the longstanding reliability of the process, scientists have had little understanding of how it actually works. But now a team of chemists, led by Patrick Holland of the University of Rochester, has new insight into how the ammonia is formed. Their findings are published in the latest issue of Science.

Holland calls nitrogen molecules "challenging." While they're abundant in the air around us, which makes them desirable for research and manufacturing, their strong triple bonds are difficult to break, making them highly unreactive. For the last century, the Haber-Bosch process has made use of an iron catalyst at extremely high pressures and high temperatures to break those bonds and produce ammonia, one drop at a time. The question of how this works, though, has not been answered to this day.

"The Haber-Bosch process is efficient, but it is hard to understand because the reaction occurs only on a solid catalyst, which is difficult to study directly," said Holland. "That's why we attempted to break the nitrogen using soluble forms of iron."

Holland and his team, which included Meghan Rodriguez and William Brennessel at the University of Rochester and Eckhard Bill of the Max Planck Institute for Bioinorganic Chemistry in Germany, succeeded in mimicking the process in solution. They discovered that an iron complex combined with potassium was capable of breaking the strong bonds between the nitrogen (N) atoms and forming a complex with an Fe3N2 core, which indicates that three iron (Fe) atoms work together in order to break the N-N bonds. The new complex then reacts with hydrogen (H2) and acid to form ammonia (NH3) -- something that had never been done by iron in solution before.

Despite the breakthrough, the Haber-Bosch process is not likely to be replaced anytime soon. While there are risks in producing ammonia at extremely high temperatures and pressures, Holland points out that the catalyst used in Haber-Bosch is considerably less expensive than what was used by his team. But Holland says it is possible that his team's research could eventually help in coming up with a better catalyst for the Haber-Bosch process -- one that would allow ammonia to be produced at lower temperatures and pressures.

At the same time, the findings could have a benefit far removed from the world of ammonia and fertilizer. When the iron-potassium complex breaks apart the nitrogen molecules, negatively charged nitrogen ions -- called nitrides -- are formed. Holland says the nitrides formed in solution could be useful in making pharmaceuticals and other products.

Peter Iglinski | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>