Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Gain Fuller Picture of Cell Protein Reactions

21.11.2013
Unique peptide array technology provides fast, low-cost, label-free method for understanding processes that modulate platelet production

Over the past decade, advances in genetic mapping tools have provided great insight into how DNA influences cell behavior. But genetics is only half the equation; much of cells’ behavior is the result of post-transcriptional processes, events that occur after DNA is transcribed, carried out by complex enzyme interactions within the cell.


Northwestern researchers have used a process called SAMDI mass spectrometry to analyze the enzyme reactions within cells.

The roles that enzymes play in regulating cell behavior have been incompletely understood, largely because researchers have lacked the proper tools to measure the many simultaneous reactions in a cell.

Northwestern University researchers have recently developed a new technique for profiling enzyme activities in cell lysate, a fluid containing the internal contents of cells. The process uses surfaces that present an array of peptides that each interact with enzymes in a lysate. The changes the enzymes make to the peptides can be directly read using a laser to determine the changes in mass of those peptides.

... more about:
»DNA »Protein »SAMDI »bone marrow »cell death

A paper about the research, “Profiling Deacetylase Activities in Cell Lysates with Peptide Arrays and SAMDI Mass Spectrometry,” was published as an Editors’ Highlight in the November 19 issue of Analytical Chemistry.

William Miller, professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering and Applied Science, initiated the project to find new methods for growing blood platelets in cultures. (Transfusions of platelets — tiny cells in the blood that promote clotting — can prevent complications from bleeding, but maintaining supplies of the cells is challenging because several donors are often required to collect one transfusion and samples must be used within days.)

Researchers can grow platelets by differentiating blood stem cells into megakaryocytes, the cells in bone marrow that produce platelets, but the process falls far short of nature. In humans, megakaryocytes undergo DNA replication without cell division to form giant cells that extend processes called proplatelets and produce thousands of platelets, but in culture they produce fewer than 10 because the cells do not get as large and many die before they release platelets.

In an earlier study, Miller and his collaborators found that inhibiting a certain family of enzymes helped promote differentiation, resulting in larger megakaryocytes and more extensive proplatelet formation.

Miller’s colleague, Milan Mrksich, the Henry Wade Rogers Professor of Biomedical Engineering, Chemistry, and Cell and Molecular Biology at McCormick, had been developing bioanalytical techniques for just this type of problem. The two partnered to profile a cell line model of the bone marrow cells that produce platelets.

“If we understand the enzyme activities that occur during megakaryocyte differentiation, it may be possible to prevent or promote differentiation for platelet production and other purposes,” Miller said.

Using Mrksich’s unique process of self-assembled monolayers desorption ionization (SAMDI) mass spectrometry, a super-fast, low-cost, and “label-free” method of measuring biochemical activities on a surface, the researchers were able to identify patterns of enzyme activities in cell lysates.

The researchers focused on histone deacetylase enzymes, a family of 17 enzymes that remove acetyl groups from certain proteins. They found that global deacetylase activity decreased significantly during differentiation, and that the decrease could be attributed to the sirtuin class comprising six deacetylases. The activities of the other 11 “classical” deacetylases did not substantially change.

Traditionally, discovering protein function has been a slow, tedious process of trial and error. Current methods use labels — chemical additives that leave their mark in a reaction, such as radioactivity or fluorescence — to determine whether a protein is active in a reaction. But labels can only test to see whether a specific reaction is occurring, which limits potential discoveries.

Using SAMDI mass spectrometry, the researchers separately tethered hundreds of different acetylated peptides to a gold-plated surface, then introduced lysate to see if a reaction would occur. When the reaction was complete, the plate was struck with a laser that released the peptides from the gold base. The contents of each site were weighed, allowing researchers to make an educated assumption about what occurred in each reaction.

“Until now, measuring the activity of enzymes in cell lysate has been a tremendous challenge because lysates contain tens of thousands of different molecules,” Mrksich said. “With SAMDI mass spectrometry, we can use arrays having thousands of peptides to identify those many activities, and through sophisticated analysis we obtain a global picture of how complex cell functions are regulated.”

In addition to Miller and Mrksich, other authors of the paper include co-first authors Hsin-Yu Kuo and Teresa A. DeLuca, both graduate students at Northwestern.

Erin White | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Protein SAMDI bone marrow cell death

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>