Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Gain Fuller Picture of Cell Protein Reactions

21.11.2013
Unique peptide array technology provides fast, low-cost, label-free method for understanding processes that modulate platelet production

Over the past decade, advances in genetic mapping tools have provided great insight into how DNA influences cell behavior. But genetics is only half the equation; much of cells’ behavior is the result of post-transcriptional processes, events that occur after DNA is transcribed, carried out by complex enzyme interactions within the cell.


Northwestern researchers have used a process called SAMDI mass spectrometry to analyze the enzyme reactions within cells.

The roles that enzymes play in regulating cell behavior have been incompletely understood, largely because researchers have lacked the proper tools to measure the many simultaneous reactions in a cell.

Northwestern University researchers have recently developed a new technique for profiling enzyme activities in cell lysate, a fluid containing the internal contents of cells. The process uses surfaces that present an array of peptides that each interact with enzymes in a lysate. The changes the enzymes make to the peptides can be directly read using a laser to determine the changes in mass of those peptides.

... more about:
»DNA »Protein »SAMDI »bone marrow »cell death

A paper about the research, “Profiling Deacetylase Activities in Cell Lysates with Peptide Arrays and SAMDI Mass Spectrometry,” was published as an Editors’ Highlight in the November 19 issue of Analytical Chemistry.

William Miller, professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering and Applied Science, initiated the project to find new methods for growing blood platelets in cultures. (Transfusions of platelets — tiny cells in the blood that promote clotting — can prevent complications from bleeding, but maintaining supplies of the cells is challenging because several donors are often required to collect one transfusion and samples must be used within days.)

Researchers can grow platelets by differentiating blood stem cells into megakaryocytes, the cells in bone marrow that produce platelets, but the process falls far short of nature. In humans, megakaryocytes undergo DNA replication without cell division to form giant cells that extend processes called proplatelets and produce thousands of platelets, but in culture they produce fewer than 10 because the cells do not get as large and many die before they release platelets.

In an earlier study, Miller and his collaborators found that inhibiting a certain family of enzymes helped promote differentiation, resulting in larger megakaryocytes and more extensive proplatelet formation.

Miller’s colleague, Milan Mrksich, the Henry Wade Rogers Professor of Biomedical Engineering, Chemistry, and Cell and Molecular Biology at McCormick, had been developing bioanalytical techniques for just this type of problem. The two partnered to profile a cell line model of the bone marrow cells that produce platelets.

“If we understand the enzyme activities that occur during megakaryocyte differentiation, it may be possible to prevent or promote differentiation for platelet production and other purposes,” Miller said.

Using Mrksich’s unique process of self-assembled monolayers desorption ionization (SAMDI) mass spectrometry, a super-fast, low-cost, and “label-free” method of measuring biochemical activities on a surface, the researchers were able to identify patterns of enzyme activities in cell lysates.

The researchers focused on histone deacetylase enzymes, a family of 17 enzymes that remove acetyl groups from certain proteins. They found that global deacetylase activity decreased significantly during differentiation, and that the decrease could be attributed to the sirtuin class comprising six deacetylases. The activities of the other 11 “classical” deacetylases did not substantially change.

Traditionally, discovering protein function has been a slow, tedious process of trial and error. Current methods use labels — chemical additives that leave their mark in a reaction, such as radioactivity or fluorescence — to determine whether a protein is active in a reaction. But labels can only test to see whether a specific reaction is occurring, which limits potential discoveries.

Using SAMDI mass spectrometry, the researchers separately tethered hundreds of different acetylated peptides to a gold-plated surface, then introduced lysate to see if a reaction would occur. When the reaction was complete, the plate was struck with a laser that released the peptides from the gold base. The contents of each site were weighed, allowing researchers to make an educated assumption about what occurred in each reaction.

“Until now, measuring the activity of enzymes in cell lysate has been a tremendous challenge because lysates contain tens of thousands of different molecules,” Mrksich said. “With SAMDI mass spectrometry, we can use arrays having thousands of peptides to identify those many activities, and through sophisticated analysis we obtain a global picture of how complex cell functions are regulated.”

In addition to Miller and Mrksich, other authors of the paper include co-first authors Hsin-Yu Kuo and Teresa A. DeLuca, both graduate students at Northwestern.

Erin White | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: DNA Protein SAMDI bone marrow cell death

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>