Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find unique fore wing folding among Sub-Saharan African Ensign wasps

05.05.2014

Researchers discovered several possibly threatened new species of ensign wasps from Sub-Saharan Africa -- the first known insects to exhibit transverse folding of the fore wing. The scientists made this discovery, in part, using a technique they developed that provides broadly accessible anatomy descriptions.

"Ensign wasps are predators of cockroach eggs, and the transverse folding exhibited by these species may enable them to protect their wings while developing inside the cramped environment of cockroach egg cases," said Andy Deans, associate professor of entomology, Penn State. "It also may be useful while they are active in their cockroach prey's leaf-litter environment."


This is a wasp.

Credit: István Mikó/Penn State


The researchers used principles of origami paper folding to physically visualize the transverse folding of the wings. In their paper, they included a print, cut and fold template to help readers comprehend the wing fold system.

Credit: István Mikó/Penn State

According to Deans, only a few other insects -- mainly some earwigs, cockroaches and beetles -- are capable of folding their hind wings transversely, along a line between the front and back wing margin, as opposed to longitudinal folding, which occurs along a line from the wing base to the wing tip.

"These other insects fold their wings transversely so that the wings can be shortened and tucked under a modified, shell-like fore wing," he said. "This, however, is the first time anyone has observed an insect that folds its fore wings transversely."

The researchers examined wasps belonging to the family Evaniidae from Sub-Saharan Africa. They named five new species -- one of them, Trissevania slideri is named after their colleague David "Slider" Love, coordinator of farm and greenhouse operations, Penn State. The scientists also created an identification key for the new tribe, Trissevaniini.

" We didn't know these new species existed until now, and at least two of them -- Trissevania heatherae and T. mrimaensis -- are found only in a small patch of forest in Kenya that is threatened by mining activity," Deans said.

According to Deans, to officially give a new species a name one must, among other things, provide a diagnosis that describes how this species differs from others.

"In most cases, the diagnosis lists certain phenotypic aspects of the wasps, such as having a black head or fuzzy hind legs," he said. "Diagnoses are typically written in natural language and using one's own custom lexicon. There is no standard syntax to describe the way an organism looks, which makes these data difficult to extract in any large-scale way."

To get around this problem, the researchers developed a technique that provides broadly accessible descriptions.

"The gist is that one could actually query across existing anatomy data using computers," he said. "For example, one could search for all the species that have fuzzy heads, or all the species that have a patch of hairs on the ventral surfaces of their abdomens. One could then cross-reference the result with information about the surrounding environment, the cockroach host, or the evolutionary history of the wasp. The more we test and refine this approach the better we'll understand its capabilities and utility."

In addition to photographing the wasps' wings, the team used principles of origami paper folding to physically visualize the transverse folding of the wings.

"We used origami, one of the most ancient and simple art forms to understand the wing folding, which, based on our observations through microscopes was otherwise impossible to understand," said István Mikó, research associate in entomology. "In our paper, we included a print, cut and fold template for the readers that helps them and us to comprehend the simple, yet enigmatic, wing fold system of the new tribe,"

According to Mikó, insect wings are common subjects of researchers who investigate bio-inspired technologies.

"The relatively simple wing-folding mechanism of the new tribe can be utilized in advance technologies, such as applying morphing systems in aerospace vehicle research or expandable structural systems in space missions," Mikó said.

The team's results appeared in the May 1 issue of PLOS ONE.

The researchers said that by characterizing the phenotypes of these species of wasps, they are one step closer to understanding the evolutionary history of the family Evaniidae.

"Understanding the evolutionary history of this family of wasps is important because this knowledge will inform our attempts to reclassify the wasps in a way that is robust and predictive," Deans said.

In the future, the team plans to use the same methods it developed to investigate other groups of wasps in the family Evaniidae as well as those in the lineage Ceraphronoidea, small wasps that parasitize many other groups of insects and for which very little is known about their diversity and morphology.

###

The National Science Foundation supported this research.

Other authors on the paper include Robert Copeland, consulting scientist and acting head of the Biosystematics Unit, International Centre of Insect Physiology and Ecology; James Balhoff, bioinformatics specialist, University of North Carolina, Chapel Hill; and Matthew Yoder, biological informatician, Illinois Natural History Survey.

A'ndrea Elyse Messer | Eurek Alert!

Further reports about: African cockroach diagnosis history insect insects small species structural technologies transverse

More articles from Life Sciences:

nachricht Switch for building barrier in roots
29.07.2015 | The University of Tokyo

nachricht How to make chromosomes from DNA
29.07.2015 | The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Lobster-Eye imager detects soft X-ray emissions

29.07.2015 | Physics and Astronomy

First detection of lithium from an exploding star

29.07.2015 | Physics and Astronomy

Controlling phase changes in solids

29.07.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>