Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find unique fore wing folding among Sub-Saharan African Ensign wasps

05.05.2014

Researchers discovered several possibly threatened new species of ensign wasps from Sub-Saharan Africa -- the first known insects to exhibit transverse folding of the fore wing. The scientists made this discovery, in part, using a technique they developed that provides broadly accessible anatomy descriptions.

"Ensign wasps are predators of cockroach eggs, and the transverse folding exhibited by these species may enable them to protect their wings while developing inside the cramped environment of cockroach egg cases," said Andy Deans, associate professor of entomology, Penn State. "It also may be useful while they are active in their cockroach prey's leaf-litter environment."


This is a wasp.

Credit: István Mikó/Penn State


The researchers used principles of origami paper folding to physically visualize the transverse folding of the wings. In their paper, they included a print, cut and fold template to help readers comprehend the wing fold system.

Credit: István Mikó/Penn State

According to Deans, only a few other insects -- mainly some earwigs, cockroaches and beetles -- are capable of folding their hind wings transversely, along a line between the front and back wing margin, as opposed to longitudinal folding, which occurs along a line from the wing base to the wing tip.

"These other insects fold their wings transversely so that the wings can be shortened and tucked under a modified, shell-like fore wing," he said. "This, however, is the first time anyone has observed an insect that folds its fore wings transversely."

The researchers examined wasps belonging to the family Evaniidae from Sub-Saharan Africa. They named five new species -- one of them, Trissevania slideri is named after their colleague David "Slider" Love, coordinator of farm and greenhouse operations, Penn State. The scientists also created an identification key for the new tribe, Trissevaniini.

" We didn't know these new species existed until now, and at least two of them -- Trissevania heatherae and T. mrimaensis -- are found only in a small patch of forest in Kenya that is threatened by mining activity," Deans said.

According to Deans, to officially give a new species a name one must, among other things, provide a diagnosis that describes how this species differs from others.

"In most cases, the diagnosis lists certain phenotypic aspects of the wasps, such as having a black head or fuzzy hind legs," he said. "Diagnoses are typically written in natural language and using one's own custom lexicon. There is no standard syntax to describe the way an organism looks, which makes these data difficult to extract in any large-scale way."

To get around this problem, the researchers developed a technique that provides broadly accessible descriptions.

"The gist is that one could actually query across existing anatomy data using computers," he said. "For example, one could search for all the species that have fuzzy heads, or all the species that have a patch of hairs on the ventral surfaces of their abdomens. One could then cross-reference the result with information about the surrounding environment, the cockroach host, or the evolutionary history of the wasp. The more we test and refine this approach the better we'll understand its capabilities and utility."

In addition to photographing the wasps' wings, the team used principles of origami paper folding to physically visualize the transverse folding of the wings.

"We used origami, one of the most ancient and simple art forms to understand the wing folding, which, based on our observations through microscopes was otherwise impossible to understand," said István Mikó, research associate in entomology. "In our paper, we included a print, cut and fold template for the readers that helps them and us to comprehend the simple, yet enigmatic, wing fold system of the new tribe,"

According to Mikó, insect wings are common subjects of researchers who investigate bio-inspired technologies.

"The relatively simple wing-folding mechanism of the new tribe can be utilized in advance technologies, such as applying morphing systems in aerospace vehicle research or expandable structural systems in space missions," Mikó said.

The team's results appeared in the May 1 issue of PLOS ONE.

The researchers said that by characterizing the phenotypes of these species of wasps, they are one step closer to understanding the evolutionary history of the family Evaniidae.

"Understanding the evolutionary history of this family of wasps is important because this knowledge will inform our attempts to reclassify the wasps in a way that is robust and predictive," Deans said.

In the future, the team plans to use the same methods it developed to investigate other groups of wasps in the family Evaniidae as well as those in the lineage Ceraphronoidea, small wasps that parasitize many other groups of insects and for which very little is known about their diversity and morphology.

###

The National Science Foundation supported this research.

Other authors on the paper include Robert Copeland, consulting scientist and acting head of the Biosystematics Unit, International Centre of Insect Physiology and Ecology; James Balhoff, bioinformatics specialist, University of North Carolina, Chapel Hill; and Matthew Yoder, biological informatician, Illinois Natural History Survey.

A'ndrea Elyse Messer | Eurek Alert!

Further reports about: African cockroach diagnosis history insect insects small species structural technologies transverse

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>