Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new way to study how enzymes repair DNA damage

29.01.2010
Researchers at Ohio State University have found a new way to study how enzymes move as they repair DNA sun damage -- and that discovery could one day lead to new therapies for healing sunburned skin.

Ultraviolet (UV) light damages skin by causing chemical bonds to form in the wrong places along the DNA molecules in our cells. Normally, other, even smaller molecules called photolyases heal the damage. Sunburn happens when the DNA is too damaged to repair, and cells die.

Photolyases have always been hard to study, in part because they work in tiny fractions of a second. In this week’s online edition of the Proceedings of the National Academy of Sciences, Ohio State physicist and chemist Dongping Zhong and his colleagues describe how they used ultra-fast pulses of laser light to spy on a photolyase while it was healing a strand of DNA.

This is the first time that anyone has observed this enzyme motion without first attaching a fluorescent molecule to the photolyase, which disturbs its movements. They were able to see the enzyme’s motion to help the healing process as it happens in nature.

“Now that we have accurately mapped the motions of a photolyase at the site of DNA repair, we can much better understand DNA repair at the atomic scale, and we can reveal the entire repair process with unprecedented detail,” said Zhong, the Robert Smith Associate Professor of Physics, and associate professor in the departments of chemistry and biochemistry at Ohio State.

Such small motions are very hard to study. Typically, researchers deal with the problem by attaching tiny bits of fluorescent molecules to the enzymes they are trying to study. But adding an extra molecule to an enzyme such as photolyase could change how it moves.

“Once you tag it, you can’t be sure that the motions you detect are the true motions of the molecule as it would normally function,” Zhong explained.

So instead of using tags, he and his team took laser “snapshots” of a single photolyase in action in the laboratory. They mapped the shape and position of the photolyase molecule as it broke up the harmful chemical bonds in DNA caused by UV light. The whole reaction lasted only a few billionths of a second.

In nature, DNA avoids damage by converting UV rays into heat. Sunscreen lotions protect us by reflecting sunlight away from the skin, and also by dissipating UV as heat.

Sunburn happens when the DNA absorbs the UV energy instead of converting it to heat. This is due in part to the random position of the DNA molecule within our cells when the UV hits it. When the UV energy is absorbed, it triggers chemical reactions that form lesions -- errant chemical bonds -- along the DNA strand.

If photolyases are unable to completely repair the lesions, the DNA can’t replicate properly. Badly damaged cells simply die — that’s what gives sunburn its sting. Scientists also believe that chronic sun damage creates mutations that lead to diseases such as skin cancer.

The work in Zhong’s lab is fundamental to the understanding of how those molecules interact. Other researchers could use this information to design drugs to heal sun damage.

“Of course, the ultimate goal of studying DNA repair is to help design artificial systems to mimic it,” he said.

This work was funded by the National Science Foundation, the National Institute of Health, the Packard Foundation and the Sloan fellowship.

Contact: Dongping Zhong, (614) 292-3044; Zhong.28@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Dongping Zhong | Ohio State University
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

nachricht How the kidneys produce concentrated urine
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>