Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find potential 'dark side' to diets high in beta-carotene

02.05.2012
New research suggests that there could be health hazards associated with consuming excessive amounts of beta-carotene.

This antioxidant is a naturally occurring pigment that gives color to foods such as carrots, sweet potatoes and certain greens. It also converts to vitamin A, and foods and supplements are the only sources for this essential nutrient.

But scientists at Ohio State University have found that certain molecules that derive from beta-carotene have an opposite effect in the body: They actually block some actions of vitamin A, which is critical to human vision, bone and skin health, metabolism and immune function.

Because these molecules derive from beta-carotene, researchers predict that a large amount of this antioxidant is accompanied by a larger amount of these anti-vitamin-A molecules, as well.

Vitamin A provides its health benefits by activating hundreds of genes. This means that if compounds contained in a typical source of the vitamin are actually lowering its activity instead of promoting its benefits, too much beta-carotene could paradoxically result in too little vitamin A.

The findings also might explain why, in a decades-old clinical trial, more people who were heavily supplemented with beta-carotene ended up with lung cancer than did research participants who took no beta-carotene at all. The trial was ended early because of that unexpected outcome.

The scientists aren’t recommending against eating foods high in beta-carotene, and they are continuing their studies to determine what environmental and biological conditions are most likely to lead to these molecules’ production.

“We determined that these compounds are in foods, they’re present under normal circumstances, and they’re pretty routinely found in blood in humans, and therefore they may represent a dark side of beta-carotene,” said Earl Harrison, Dean’s Distinguished Professor of Human Nutrition at Ohio State and lead author of the study. “These materials definitely have anti-vitamin-A properties, and they could basically disrupt or at least affect the whole body metabolism and action of vitamin A. But we have to study them further to know for sure.”

The study is scheduled for publication in the May 4, 2012, issue of the Journal of Biological Chemistry.

Previous research has already established that when beta-carotene is metabolized, it is broken in half by an enzyme, which produces two vitamin A molecules.

In this new study, the Ohio State researchers showed that some of these molecules are produced when beta-carotene is broken in a different place by processes that are not yet fully understood and act to antagonize vitamin A.

Harrison is an expert in the study of antioxidants called carotenoids, which give certain fruits and vegetables their distinctive colors. Carotenoids’ antioxidant properties are associated with protecting cells and regulating cell growth and death, all of which play a role in multiple disease processes.

For this work, he joined forces with co-authors Robert Curley, professor of medicinal chemistry and pharmacognosy, and Steven Schwartz, professor of food science and technology, both at Ohio State. Curley specializes in producing synthetic molecules in the pursuit of drug development, and Schwartz is an expert at carotenoid analysis.

Curley manufactured a series of beta-carotene-derived molecules in the lab that match those that exist in nature. The researchers then exposed these molecules to conditions mimicking their metabolism and action in the body.

Of the 11 synthetic molecules produced, five appeared to function as inhibitors of vitamin A action based on how they interacted with receptors that would normally launch the function of vitamin A molecules.

“The original idea was that maybe these compounds work the way vitamin A works, by activating what are called retinoic acid receptors. What we found was they don’t activate those receptors. Instead, they inhibit activation of the receptor by retinoic acid,” Curley said. “From a drug point of view, vitamin A would be called an agonist that activates a particular pathway, and these are antagonists. They compete for the site where the agonist binds, but they don’t activate the site. They inhibit the activation that would normally be expected to occur.”

Once that role was defined, the researchers sought to determine how prevalent these molecular components might be in the human body. Analyzing blood samples obtained from six healthy human volunteers, the scientists in the Schwartz lab found that some of these anti-vitamin-A molecules were present in every sample studied, suggesting that they are a common product of beta-carotene metabolism.

The compounds also have been found previously in cantaloupe and other orange-fleshed melons, suggesting humans might even absorb these molecules directly from their diet.

Harrison noted that the findings might explain the outcome of a well-known clinical trial that has left scientists puzzled for years. In that trial, people at high risk for lung cancer - smokers and asbestos workers - were given massive doses of beta-carotene over a long period of time in an attempt to lower that risk. The trial ended early because more supplemented participants developed cancer than did those who received no beta-carotene. This outcome was reinforced by results of a follow-up animal study.

“Those trials are still sending shockwaves 20 years later to the scientific community,” said Harrison, also an investigator in Ohio State’s Comprehensive Cancer Center. “What we found provides a plausible explanation of why larger amounts of beta-carotene might have led to unexpected effects in these trials.”

The research also has implications for efforts to bio-engineer staple crops in developing countries so they contain excess beta-carotene, which is considered a sustainable way to provide these populations with pro-vitamin A. Existing projects include production of golden rice in Asia, golden maize in South America and cassava in Africa.

“A concern is that if you engineer these crops to have unusually high levels of beta-carotene, they might also have high levels of these compounds,” Harrison said.

The researchers are continuing to study these compounds, including whether food processing or specific biological processes affect their prevalence. Previous studies have suggested that oxidative stress, which can result from smoking and air pollution exposure, can lead to higher production of these anti-vitamin-A molecules, Harrison noted.

This research was supported by the National Institutes of Health and the Ohio Agricultural Research and Development Center.

Additional co-authors include Abdulkerim Eroglu, Carlo dela Sena and Sureshbabu Narayanasamy of the Department of Human Nutrition; Damian Hruszkewycz of the College of Pharmacy; and Ken Riedl and Rachel Kopec of the Department of Food Science and Technology, all at Ohio State. Harrison, Curley, Eroglu and dela Sena also are affiliated with Ohio State’s Biochemistry Program.

Contact: Earl Harrison, (614) 292-8189; eharrison@ehe.osu.edu
Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Earl Harrison | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>