Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find organic pollutants not factor in turtle tumor disease

16.07.2014

For nearly four decades, scientists have suspected that persistent organic pollutants (POPs) contributed to a green turtle's susceptibility to the virus that causes fibropapilomatosis (FP), a disease that forms large benign tumors that can inhibit the animal's sight, mobility and feeding ability.

In a new study,* researchers from the Hollings Marine Laboratory (HML), a government-university partner facility in Charleston, S.C., and from university and federal collaborators in Hawaii demonstrated POPs are not, in fact, a co-factor linked to the increasing number of green sea turtles afflicted with FP.


Persistent organic pollutants do not make Hawaiian green sea turtles more susceptible to the large tumors associated with fibropapillomastosis seen in this specimen.

Credit: Keller/NIST

POPs are a large group of man-made chemicals that, as their name indicates, persist in the environment. They also spread great distances through air and water, accumulate in human and animal tissues, increase in concentration up food chains, and may have carcinogenic and neurodevelopmental effects.

POPs include banned substances such as DDT and toxaphenes, once used as pesticides; polychlorinated biphenyls (PCBs), once used as insulating fluids; and polybrominated diphenyl ethers (PDBEs), still used as flame retardants. Two previous studies attempting to link POPs and FP were unable to rule out the impact of the pollutants on the disease.

"We wanted to do a thorough study looking at a large, statistically valid population of turtles and using methods that could detect even tiny levels of POPs in their tissues," says National Institute of Standards and Technology (NIST) research biologist Jennifer Keller, lead author on the paper appearing in the journal Environmental Science and Technology.

Keller and her colleagues collected turtle blood samples at four locations across Hawaii, each one having a different prevalence of FP—none, low, moderate and high—in the marine turtle population residing there. "We analyzed the plasma for 164 different organic compounds to see if POP concentrations increased with increasing prevalence of FP," Keller says. "We also looked at the levels of halogenated phenols, chemicals which can come from either man-made [POP] sources or naturally from the green turtle's main food source, marine algae."

The researchers discovered that increasing POP concentrations did not correspond with a like rise in the numbers of FP tumors observed. "Our findings show that POPs are not the trigger for FP, so we can eliminate these pollutants from future studies trying to explain why the disease is more common in certain areas or why its prevalence is changing with time," Keller says.

As for halogenated phenols, the team found that the sampled turtles did have detectable concentrations of the compounds. "While it's a novel discovery for sea turtles, we believe that these phenols are likely from the turtle's diet of algae rather than man-made POPs," Keller explains.

###

Collaborating with Keller were researchers from Hawaiian branches of two federal agencies, the National Marine Fisheries Service and the U.S. Geological Survey, as well as from Hawaii Pacific University and the Hawaii Preparatory Academy.

The HML is a unique partnership of governmental and academic organizations including NIST, NOAA's National Ocean Service, the South Carolina Department of Natural Resources, the College of Charleston and the Medical University of South Carolina.

*J.M. Keller, G.H. Balazs, F. Nilsen, M. Rice, T.M. Work and B.A. Jensen. Investigating the potential role of persistent organic pollutants in Hawaiian green sea turtle fibropapillomatosis. Environmental Science and Technology. Accepted for publication June 25, 2014, DOI: 10.1021/es5014054

Michael E. Newman | Eurek Alert!
Further information:
http://www.nist.gov

Further reports about: Charleston Hawaii Hawaiian Marine NIST POP POPs concentrations phenols pollutants prevalence turtles

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>