Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find leukemia cells metabolize fat to avoid cell death

28.01.2010
Findings provide a new potential target for killing cancer cells

Leukemia cells, like most cancers, are addicted to glucose to generate their energy, but new research shows for the first time that these cells also rely on fatty acid metabolism to grow and to evade cell death.

Inhibiting fatty acid oxidation makes leukemia cells vulnerable to drugs that force them to commit suicide, scientists from The University of Texas M. D. Anderson Cancer Center and The University of Texas Medical School at Houston report in the January edition of the Journal of Clinical Investigation.

"These findings translate to a potentially transformational approach to controlling leukemia and cancer cell metabolism by therapeutically targeting fatty acid oxidation," said co-senior author Michael Andreeff, M.D., Ph.D., professor in M. D. Anderson's Department of Stem Cell Transplantation and Cellular Therapy.

"Cancer metabolism has attracted renewed, cutting-edge research interest," Andreeff said. "Here we have first identified a metabolic target and our first in vivo results are promising, but there is much more work that needs to be done."

Andreeff and co-senior author Heinrich Taegtmeyer, M.D., D.Phil., professor in the University of Texas Medical School Division of Cardiovascular Medicine, are collaborating to develop drugs based on their research results.

"The leukemia cells' appetite for fat seems to be formidable," Taegtmeyer said. "More importantly, fat oxidation seems to promote leukemia cell survival. Conversely, shutting off fat oxidation makes the cells vulnerable to self-destruction. If these initial results hold up, inhibitors of fat oxidation may become a new way to treat leukemia patients."

In normal cells, the processing of fatty acids in the cell's power-generating mitochondria leads to production of ATP, a molecule that serves as the major source of energy for the cell. The researchers showed that fatty acid oxidation in leukemia cell mitochondria drives cellular oxygen consumption and inhibits the activity of proteins that are vital to apoptosis, the programmed death of defective cells that begins in the mitochondria.

For energy generation, leukemia cells rely on glycolysis, the processing of a glucose molecule in the cellular cytoplasm that produces two molecules of ATP and two of pyruvate. Pyruvate, in turn, is converted to energy by the Krebs Cycle, a series of chemical reactions inside the mitochondria.

In a series of lab experiments, the researchers demonstrated that etomoxir, a drug used to treat heart failure, inhibits the growth of leukemia cells in culture in a dose-dependent manner. They also found that etomoxir sensitizes leukemia cells to drugs that cause apoptosis. The fatty acid synthase/lipase inhibitor orlistat also sensitized leukemia cells to programmed cell death.

Etomoxir treats heart failure by switching the heart's energy supply from fatty acids to pyruvate, which is more efficiently converted to energy by the mitochondria.

Mouse model experiments showed that combining etomoxir with the apoptosis-inducing drug ABT-737 or with cytarabine, a frontline drug for acute myeloid leukemia, reduced the leukemia burden and increased median survival time by 33 percent and 67 percent respectively compared to control group mice.

Additionally, etomoxir was found to decrease the number of quiescent leukemia progenitor cells in half of blood samples taken from acute myeloid leukemia patients. These quiescent cells are important, the researchers note, because they are capable of initiating leukemia and are highly resistant to traditional chemotherapy.

"Our findings suggest that mitochondrial function and resistance to apoptosis in leukemia cells are intimately linked with the entry of fatty acids into mitochondria," said first author Ismael Samudio, M.D., a fellow in Stem Cell Transplantation and Cellular Therapy. "For many years it has been apparent that leukemia cells are addicted to glucose for the generation of cellular energy (ATP). Now our results suggest that leukemia cells are addicted to fatty acids for the function of the Krebs cycle and the prevention of cell death."

Research was funded by a Young Investigator Award from Leukemia Texas to Samudio, the Paul and Mary Haas Chair in Genetics held by Andreeff and by grants from the National Cancer Institute and the National Heart, Lung and Blood Institute.

Samudio is now associate professor in biochemistry at the Universidad Javeriana in Bogota, Colombia. Co-authors with Andreeff, Taegtmeyer and Samudio are Michael Fiegl, M.D., Borys Korchin, M.D., Ph.D., and Seshargiri Duvvuri of M. D. Anderson's Department of Stem Cell Transplantation and Cellular Therapy; Romain Harmancey, Ph.D. of the University of Texas Medical School Division of Cardiology; Hagop Kantarjian, M.D., and Marina Konopleva, M.D., Ph.D., of M. D. Anderson's Department of Leukemia; and Kumar Kaluarachchi, Ph.D., and William Bornmann, Ph.D., of M. D. Anderson's Department of Experimental Therapeutics.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For six of the past eight years, including 2009, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>