Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible genetic link for pelvic floor disorders

27.04.2009
Gene on chromosome 9 may predispose some women to pelvic floor defects

University of Utah researchers have identified a region of the human genome that may contribute to the development of pelvic floor disorders such as pelvic organ prolapse and stress urinary incontinence, according to a study published this week in the American Journal of Human Genetics.

Kristina Allen-Brady, Ph.D., and colleagues at the University of Utah School of Medicine analyzed the DNA of 70 women from 32 families with at least two cases of pelvic floor disorders (PFD) and found significant evidence for a gene that predisposes to PFD on chromosome 9.

"PFDs are a major public health concern for women of all ages," says Allen-Brady, research assistant professor of genetic epidemiology in biomedical informatics and lead author of the study. "Previous research has found that women with urinary incontinence are more likely to have family members with incontinence, but the genetic factors that predispose to PFD are not well understood."

An estimated one-third of all U.S. women are affected by some type of PFD, such as pelvic organ prolapse (POP) or urinary incontinence, during her lifetime. The pelvic floor refers to the network of muscles, ligaments, and connective tissues that keeps all of a woman's pelvic organs in place. PFDs occur when these muscles and tissues weaken or are injured. One in nine women will undergo surgery for PFD, and one-third of these women will require repeated surgeries.

Risk factors such as childbirth, increased age, smoking, and obesity may contribute to PFD, but they do not fully explain the development of these disorders. To better understand the genetics of PFD, Allen-Brady and her colleagues identified 32 families which included at least two closely-related female relatives affected by POP. In POP, the uterus, bladder, or other pelvic organ drops down and protrudes abnormally because supporting tissues are weakened.

The researchers studied DNA from a total of 70 women who received treatment, usually surgery, for moderate-to-severe POP. Genetic analysis of this DNA showed significant evidence that genes located in a region of the genome called chromosome 9q21 may be inherited together in related women who have POP.

"This is the largest collection of families with POP that has been reported to date," says Allen-Brady. "Although it is premature to suggest that all PFDs have a common genetic predisposition, our study shows significant evidence that the chromosome 9q21 region may be linked to the development of PFD in families where multiple women are affected."

The researchers are in the process of collecting and analyzing DNA from other families that seem to be at high risk for PFDs in order to strengthen their conclusions. Although PFDs are likely a disease caused by both genetic and environmental factors, further evidence that the chromosome 9q21 region is linked to PFD can direct efforts at narrowing down and identifying a gene that is responsible for disease development.

Confirmation of genetic susceptibility could provide insight into the underlying disease process of PFD and potential ways to prevent this common condition.

Allen-Brady's co-authors on this study were Lisa A. Cannon-Albright, Ph.D., senior author and professor of biomedical informatics; Peggy A. Norton, M.D., professor of obstetrics and gynecology and chief of urognyecology; and James M. Farnham, biostatistician, and Craig Teerlink, doctoral student, both of the Department of Biomedical Informatics.

The project was funded by the Eunice Kennedy Shriver National Institute for Child Health and Human Development.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>