Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find possible genetic link for pelvic floor disorders

27.04.2009
Gene on chromosome 9 may predispose some women to pelvic floor defects

University of Utah researchers have identified a region of the human genome that may contribute to the development of pelvic floor disorders such as pelvic organ prolapse and stress urinary incontinence, according to a study published this week in the American Journal of Human Genetics.

Kristina Allen-Brady, Ph.D., and colleagues at the University of Utah School of Medicine analyzed the DNA of 70 women from 32 families with at least two cases of pelvic floor disorders (PFD) and found significant evidence for a gene that predisposes to PFD on chromosome 9.

"PFDs are a major public health concern for women of all ages," says Allen-Brady, research assistant professor of genetic epidemiology in biomedical informatics and lead author of the study. "Previous research has found that women with urinary incontinence are more likely to have family members with incontinence, but the genetic factors that predispose to PFD are not well understood."

An estimated one-third of all U.S. women are affected by some type of PFD, such as pelvic organ prolapse (POP) or urinary incontinence, during her lifetime. The pelvic floor refers to the network of muscles, ligaments, and connective tissues that keeps all of a woman's pelvic organs in place. PFDs occur when these muscles and tissues weaken or are injured. One in nine women will undergo surgery for PFD, and one-third of these women will require repeated surgeries.

Risk factors such as childbirth, increased age, smoking, and obesity may contribute to PFD, but they do not fully explain the development of these disorders. To better understand the genetics of PFD, Allen-Brady and her colleagues identified 32 families which included at least two closely-related female relatives affected by POP. In POP, the uterus, bladder, or other pelvic organ drops down and protrudes abnormally because supporting tissues are weakened.

The researchers studied DNA from a total of 70 women who received treatment, usually surgery, for moderate-to-severe POP. Genetic analysis of this DNA showed significant evidence that genes located in a region of the genome called chromosome 9q21 may be inherited together in related women who have POP.

"This is the largest collection of families with POP that has been reported to date," says Allen-Brady. "Although it is premature to suggest that all PFDs have a common genetic predisposition, our study shows significant evidence that the chromosome 9q21 region may be linked to the development of PFD in families where multiple women are affected."

The researchers are in the process of collecting and analyzing DNA from other families that seem to be at high risk for PFDs in order to strengthen their conclusions. Although PFDs are likely a disease caused by both genetic and environmental factors, further evidence that the chromosome 9q21 region is linked to PFD can direct efforts at narrowing down and identifying a gene that is responsible for disease development.

Confirmation of genetic susceptibility could provide insight into the underlying disease process of PFD and potential ways to prevent this common condition.

Allen-Brady's co-authors on this study were Lisa A. Cannon-Albright, Ph.D., senior author and professor of biomedical informatics; Peggy A. Norton, M.D., professor of obstetrics and gynecology and chief of urognyecology; and James M. Farnham, biostatistician, and Craig Teerlink, doctoral student, both of the Department of Biomedical Informatics.

The project was funded by the Eunice Kennedy Shriver National Institute for Child Health and Human Development.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>