Researchers find possible genetic link for pelvic floor disorders

University of Utah researchers have identified a region of the human genome that may contribute to the development of pelvic floor disorders such as pelvic organ prolapse and stress urinary incontinence, according to a study published this week in the American Journal of Human Genetics.

Kristina Allen-Brady, Ph.D., and colleagues at the University of Utah School of Medicine analyzed the DNA of 70 women from 32 families with at least two cases of pelvic floor disorders (PFD) and found significant evidence for a gene that predisposes to PFD on chromosome 9.

“PFDs are a major public health concern for women of all ages,” says Allen-Brady, research assistant professor of genetic epidemiology in biomedical informatics and lead author of the study. “Previous research has found that women with urinary incontinence are more likely to have family members with incontinence, but the genetic factors that predispose to PFD are not well understood.”

An estimated one-third of all U.S. women are affected by some type of PFD, such as pelvic organ prolapse (POP) or urinary incontinence, during her lifetime. The pelvic floor refers to the network of muscles, ligaments, and connective tissues that keeps all of a woman's pelvic organs in place. PFDs occur when these muscles and tissues weaken or are injured. One in nine women will undergo surgery for PFD, and one-third of these women will require repeated surgeries.

Risk factors such as childbirth, increased age, smoking, and obesity may contribute to PFD, but they do not fully explain the development of these disorders. To better understand the genetics of PFD, Allen-Brady and her colleagues identified 32 families which included at least two closely-related female relatives affected by POP. In POP, the uterus, bladder, or other pelvic organ drops down and protrudes abnormally because supporting tissues are weakened.

The researchers studied DNA from a total of 70 women who received treatment, usually surgery, for moderate-to-severe POP. Genetic analysis of this DNA showed significant evidence that genes located in a region of the genome called chromosome 9q21 may be inherited together in related women who have POP.

“This is the largest collection of families with POP that has been reported to date,” says Allen-Brady. “Although it is premature to suggest that all PFDs have a common genetic predisposition, our study shows significant evidence that the chromosome 9q21 region may be linked to the development of PFD in families where multiple women are affected.”

The researchers are in the process of collecting and analyzing DNA from other families that seem to be at high risk for PFDs in order to strengthen their conclusions. Although PFDs are likely a disease caused by both genetic and environmental factors, further evidence that the chromosome 9q21 region is linked to PFD can direct efforts at narrowing down and identifying a gene that is responsible for disease development.

Confirmation of genetic susceptibility could provide insight into the underlying disease process of PFD and potential ways to prevent this common condition.

Allen-Brady's co-authors on this study were Lisa A. Cannon-Albright, Ph.D., senior author and professor of biomedical informatics; Peggy A. Norton, M.D., professor of obstetrics and gynecology and chief of urognyecology; and James M. Farnham, biostatistician, and Craig Teerlink, doctoral student, both of the Department of Biomedical Informatics.

The project was funded by the Eunice Kennedy Shriver National Institute for Child Health and Human Development.

Media Contact

Phil Sahm EurekAlert!

More Information:

http://www.utah.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors