Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Find Genetic Evidence That Turtles Are More Closely Related To Birds Than Lizards And Snakes

25.05.2012
The evolutionary origin of turtles is one of the last unanswered questions in vertebrate evolution.

Paleontological and morphological studies place turtles as either evolving from the ancestor of all reptiles or as evolving from the ancestor of snakes, lizards, and tuataras. Conflictingly, genetic studies place turtles as evolving from the ancestor of crocodilians and birds.

Having recently looked at more than a thousand of the least-changed regions in the genomes of turtles and their closest relatives, a team of Boston University researchers has confirmed that turtles are most closely related to crocodilians and birds rather than to lizards, snakes, and tuataras.

The researchers published their findings in the Royal Society journal Biology Letters. By showing that turtles are closer relatives to crocodiles and birds (archosaurs) than lizards, snakes and tuatara (lepidosaurs), the study challenges previous anatomical and paleontological assessments. Nick Crawford, a post-graduate researcher in biology in BU’s Graduate School of Arts & Sciences and lead author of the study, achieved these findings by using computational analysis to examine regions of the different animals’ genomes.

“Turtles have been an enigmatic vertebrate group for a long time and morphological studies placed them as either most closely related to the ancestral reptiles, that diverged early in the reptile evolutionary tree, or as closer to lizards, snakes, and tuataras,” says Crawford.

The study is the first genomic-scale analysis addressing the phylogenetic position of turtles, using over 1000 loci from representatives of all major reptile lineages including tuatara (lizard-like reptiles found only in New Zealand). Earlier studies of morphological traits positioned turtles at the base of the reptile tree with lizards, snakes and tuatara (lepidosaurs), whereas molecular analyses typically allied turtles with crocodiles and birds (archosaurs).

The BU researchers challenged a recent analysis of shared microRNA families that suggested turtles are more closely related to lepidosaurs. They did this with data from many single-copy nuclear loci dispersed throughout the genome, using sequence capture, high-throughput sequencing and published genomes to obtain sequences from 1145 ultraconserved elements (UCEs) and their variable flanking DNA. The resulting phylogeny provides overwhelming support for the hypothesis that turtles evolved from a common ancestor of birds and crocodilians, rejecting the hypothesized relationship between turtles and lepidosaurs.

The researchers used UCEs because they are easily aligned portions of extremely divergent genomes, allowing many loci to be interrogated across evolutionary timescales, and because sequence variability within UCEs increases with distance from the core of the targeted UCE, suggesting that phylogenetically informative content in flanking regions can inform hypotheses spanning different evolutionary timescales. The combination of taxonomic sampling, the genome-wide scale of the sampling and the robust results obtained, regardless of analytical method, indicates that the turtle–archosaur relationship is unlikely to be caused by long-branch attraction or other analytical artefacts.

The BU study is the first to produce a well-resolved reptile tree that includes the tuatara and multiple loci, and also is the first to investigate the placement of turtles within reptiles using a genomic-scale analysis of single-copy DNA sequences and a complete sampling of the major relevant evolutionary lineages. Because UCEs are conserved across most vertebrate groups and found in groups including yeast and insects, this framework is generalizable beyond this study and relevant to resolving ancient phylogenetic enigmas throughout the tree of life. This approach to high throughput phylogenomics—based on thousands of loci—is likely to fundamentally change the way that systematists gather and analyse data.

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research.

Nicholas Crawford | Newswise Science News
Further information:
http://www.bu.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>