Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find gene that turns up effect of chemotherapy

30.01.2013
Chemotherapy is one of the most common treatments for cancer patients.
However, many patients suffer from serious side-effects and a large proportion does not respond to the treatment. Researchers from the Biotech Research and Innovation Centre (BRIC) and Center for Healthy Aging, University of Copenhagen, now show that the gene FBH1 helps turn up the effect of chemotherapy. The results are published today in the Journal Nature Communications.

”Our results show that the gene FBH1 is crucial in order for some chemotherapeutics to become active in the body and kill the cancer cells. If we can find a feasible method to increase the activity of the gene, we can use our cells’ own resources to improve cancer treatment, says associate professor Claus Sørensen who has lead the team of researchers behind the results.

Own gene helps chemotherapy fight cancer

The researchers have used a method called RNA interference to study whether some of the genes in our DNA are important for cancer cells to react to certain chemotherapeutics.

”By using the method to remove single genes from cancer cells and then exposing the cells to chemotherapy, we found that FBH1 is important for the effect of the chemotherapy. Actually, the presence of the gene was an absolutely requirement in order to effectively kill the cancer cells with the type of chemotherapeutics we have studied, says postdoc Kasper Fugger who has led the experimental part of the investigation.

Cancer cells containing FBH1 obtain DNA damage (red staining) when exposed to chemotherapy

Chemotherapy act by exposing cancer cells to a kind of extreme stress when they divide. The result is detrimental damage to the cells’ DNA that cannot be repaired, causing the cells to die. The new results show that it is in fact FBH1 that contributes to the formation of DNA damage when treating with chemotherapy and this knowledge can be used to optimize cancer therapy.

Selection of patients for chemotherapy

In the last decade it has become clear that targeted treatment to individual cancer patients is crucial for an effective treatment with least possible side-effects. By assessing the presence of FBH1 in a tumour the doctors can get an indication of whether the patient will benefit from chemotherapy.

”Our results could help indicate that patients with low or no FBH1 in the cancer cells will not benefit from certain types of chemotherapy, but should be administered another type of treatment. So by using the genetic fingerprint of a tumour doctors can adjust the treatment to individual patients, says Claus Sørensen.

The next step - finding the FBH1 volume knob

The next step for the research team is to investigate the presence of changes, so-called mutations in FBH1. Identifying mutations rendering cancer cells resistant to certain chemotherapeutics can be used to target the treatment even better to individual patients. Another goal for the researchers is to find a way to turn up the activity of FBH1 in cancer cells.

”Our hope is to find a method to boost the activity of the FBH1 gene in cancer cells since this will make them more sensitive to chemotherapy. Alternatively, we may find a way to simulate an effect similar to that of FBH1, which can be used as additional treatment in order to sensitise cancer cells to chemotherapy. If we achieve this, more patients will benefit from the treatment, says Kasper Fugger.

Original paper

FBH1 co-operates with MUS81 in inducing DNA double-strand breaks and cell death following replication stress, Kasper Fugger, Wai Kit Chu, Peter Haahr, Arne Nedergaard Kousholt, Halfdan Beck, Miranda J. Payne, Katsuhiro Hanada, Ian D. Hickson, Claus Storgaard Sørensen; Nature Coomunications, January 29, 2013.

Contact

Assiciate professor Claus Sørensen
BRIC
Phone: +45 35 32 56 78

Postdoc Kasper Fugger
BRIC
Phone: +45 35 32 56 26

Research coordinator Katrine Sonne-Hansen
BRIC
Phone: +45 35 32 56 48
Mobil: + 45 25 85 47 42

Claus Sørensen | EurekAlert!
Further information:
http://www.ku.dk

Further reports about: DNA DNA damage FBH1 Nature Immunology cancer cells

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>