Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find controlling element of Huntington’s disease

26.02.2013
Molecular troika regulates production of harmful protein
A three molecule complex may be a target for treating Huntington’s disease, a genetic disorder affecting the brain. This finding by an international research team including scientists from the German Center for Neurodegenerative Diseases (DZNE) in Bonn and the University of Mainz was published today in the online journal “Nature Communications”. The report states that the so-called MID1 complex controls the production of a protein which damages nerve cells.

Huntington’s disease, also known as Huntington’s chorea, is a hereditary brain disease causing movement disorders and dementia. In Germany, there are about 8,000 patients affected by Huntington’s disease, with several hundred new cases arising every year. The disease usually manifests between the ages of 35 and 50. To date, it is incurable and inevitably leads to death. It is caused by a specific genetic defect: In the patient’s DNA, which is the carrier of genetic information, there are multiple copies of a certain motif. “Repeats like this are also found in healthy people. However, in cases of Huntington’s disease, these sequences are longer than usual,” explains Dr. Sybille Krauss from the DZNE in Bonn.

The long DNA sequences in Huntington’s disease lead to changes in a certain protein called “Huntingtin”. The DNA is like an archive of blueprints for proteins. Errors in the DNA therefore result in defective proteins. “Huntingtin is essential for the organism’s survival. It is a multi-talent which is important for many processes,” emphasises Krauss. “If the protein is defective, brain cells may die.“

In the spotlight: protein synthesis

In the current study, the scientists around Sybille Krauss and the Mainz-based human geneticist Susann Schweiger took a closer look at a critical stage of protein production – translation. At this step, a copy of the DNA, the so-called messenger RNA, is processed by the cell’s protein factories. In patients with Huntington’s disease, the messenger RNA contains an unusually high number of consecutive CAG sequences – CAG representing the building plan for the amino acid glutamine.

These repetitive sequences have a direct consequence: more glutamine than normal is built into Huntingtin, which is therefore defective. Sybille Krauss and her colleagues have now identified a group of three molecules, which regulate the production of this protein. “We were able to show that this complex binds to the messenger RNA and controls the synthesis of defective Huntingtin,” says Krauss. When the scientists reduced the concentration of this so-called MID1 complex in the cell, production of the defective protein declined.
“If we could find a way of influencing this complex, for example with pharmaceuticals, it is quite possible that we could directly affect the production of defective Huntingtin. This kind of treatment would not just treat the symptoms but also the causes of Huntington’s disease,” says Krauss.

Background:

Three molecules come together

The complex consists of MID1, from which it gets its name, and the proteins PP2Ac and S6K. “Every single one of these proteins is known to be important for translation. We have discovered that in the specific case of Huntington’s disease, they together bind to the CAG sequences. This was previously unknown. We also found that binding increases with repeat lengths,” says Krauss. “In sequences of normal length, we found only weak binding or none at all.”

The Bonn-based molecular biologist and her colleagues investigated the effect of the MID1 complex and the interaction between its components in a series of elaborate laboratory experiments. “This project took several years of research work,” says Krauss. Along with biochemical procedures, the scientists used cell cultures and analysed proteins from the brains of mice. The mice’s genetic code had been modified in such a way that it contained elongated CAG-repeats as it is typical for Huntington’s disease.
From previous studies it was already known that the protein MID1 tends to bind messenger RNAs. The scientists were now able to show that MID1 also attaches to messenger RNAs with excessively long CAG sequences. Furthermore, experiments showed that PP2Ac and S6K also bound the RNA in the presence of MID1. However, if the MID1 was depleted, this binding did not occur. “From this, we can conclude that these three proteins form a molecular complex, which binds to the RNA. MID1 is a key component. It actually seems to keep together its binding partners,” Krauss comments on the results of the experiments.

Complex controls protein production

The researchers were also able to prove that the MID1 complex controls the translation of RNA with excessively long CAG sequences. For this, they investigated various cell cultures. The cells produced either normal Huntingtin or – due to excessively long sequences in their DNA – a defective version of this protein. The scientists reduced the occurrence of MID1 inside the cells using a procedure known as “knock-down”. The elimination of this protein, which is a major part of the MID1 complex, had direct consequences: the production of defective Huntingtin declined. “However, it did not affect the production of normal Huntingtin,” emphazises Krauss. “This further proves that the MID1 complex specifically targets RNAs with excessively long CAG sequences.”

Highly specific

The Bonn-based molecular biologist sees this specific influence as a chance to treat Huntington’s disease: “The MID1 complex is a promising target for therapy. It indicates a possibility to suppress the production of defective Huntingtin only, while not affecting the production of normal Huntingtin. This is of particular significance, because the normal protein is also being produced in the patients' bodies and it is important for the organism.”

A suitable active substance has yet to be found, says Krauss. However, the next developments are in sight: “We now want to test potential substances in the laboratory,” she says.

Original Publication
„Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex“, Sybille Krauß, Nadine Griesche, Ewa Jastrzebska, Changwei Chen, Désiree Rutschow, Clemens Achmüller, Stephanie Dorn, Sylvia M. Boesch, Maciej Lalowski, Erich Wanker, Rainer Schneider, Susann Schweiger, Nature Communications, DOI: 10.1038/ncomms2514 - http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2514.html

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en/about-us/public-relations/meldungen/2013/press-release-no-7.html

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>