Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new chemical key that could unlock hundreds of new antibiotics

29.10.2008
Chemistry researchers at The University of Warwick and the John Innes Centre, have found a novel signalling molecule that could be a key that will open up hundreds of new antibiotics unlocking them from the DNA of the Streptomyces family of bacteria.

With bacterial resistance growing researchers are keen to uncover as many new antibiotics as possible. Some of the Streptomyces bacteria are already used industrially to produce current antibiotics and researchers have developed approaches to find and exploit new pathways for antibiotic production in the genome of the Streptomyces family.

For many years it was thought that the relatively unstable butyrolactone compounds represented by “A-factor” were the only real signal for stimulating such pathways of possible antibiotic production but the Warwick and John Innes teams have now found a much more stable group of compounds that may have the potential to produce at least one new antibiotic compound from up to 50% of the 1000 or so known Streptomyces family of bacteria.

Colonies of bacteria such as Streptomyces naturally make antibiotics as a defence mechanism when those colonies are under stress and thus more susceptible to attack from other bacteria. The colonies need to produce a compound to spread a signal across the colony to start producing their natural antibiotic weapons.

The amounts of such signalling material produced are incredibly small. Only micrograms of these compounds can be isolated by Chemists and usually the available instrumentation needs at least milligrams of material to make a useful analysis. However the Warwick team was able to make use of the University of Warwick’s 700 MHz NMR machine to get a close look at just micrograms of 5 new possible signalling compounds identified as 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (or AHFCAs).

The researchers, led by Dr Christophe Corre, and Professor Greg Challis from the University of Warwick’s Department of Chemistry were able to combine their new insight into these compounds with the relatively new full genetic sequences now available of some Streptomyces bacteria. They became convinced that the AHFCA group of compounds could play a role in stimulating the production of known and novel antibiotics. When they added AHFCAs to Streptomyces coelicolor W81 they were proved correct as it stimulated the production of methylenomycin antibiotics.

While the methylenomycins were already known as antibiotics, the researchers think it likely that novel pathways for antibiotic production are also under the control of AHFCAs. The AHFCAs should be relatively easy to make in significant quantity in a lab and could be used as a new tool for discovery of antibiotics. The researchers are now seeking funding to explore the AHFCAs and develop a novel approach for drug discovery. Introducing a variety of AHFCAs to various Streptomyces bacteria could activate hundreds of pathways for antibiotic production.

The lead researcher on the paper Dr Christophe Corre, from the University of Warwick’s Department of Chemistry said:

“Early results also suggest that this approach could switch on novel antibiotic production pathways in up to 50% of Streptomyces bacteria. With thousands of known members of the Streptomyces family that could mean that AHFCAs could unlock hundreds of new antibiotics to replenish our dwindling arsenal of effective antibiotic drugs.”

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk
http://www2.warwick.ac.uk/newsandevents/pressreleases/researchers_find_new/

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>