Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find new chemical key that could unlock hundreds of new antibiotics

Chemistry researchers at The University of Warwick and the John Innes Centre, have found a novel signalling molecule that could be a key that will open up hundreds of new antibiotics unlocking them from the DNA of the Streptomyces family of bacteria.

With bacterial resistance growing researchers are keen to uncover as many new antibiotics as possible. Some of the Streptomyces bacteria are already used industrially to produce current antibiotics and researchers have developed approaches to find and exploit new pathways for antibiotic production in the genome of the Streptomyces family.

For many years it was thought that the relatively unstable butyrolactone compounds represented by “A-factor” were the only real signal for stimulating such pathways of possible antibiotic production but the Warwick and John Innes teams have now found a much more stable group of compounds that may have the potential to produce at least one new antibiotic compound from up to 50% of the 1000 or so known Streptomyces family of bacteria.

Colonies of bacteria such as Streptomyces naturally make antibiotics as a defence mechanism when those colonies are under stress and thus more susceptible to attack from other bacteria. The colonies need to produce a compound to spread a signal across the colony to start producing their natural antibiotic weapons.

The amounts of such signalling material produced are incredibly small. Only micrograms of these compounds can be isolated by Chemists and usually the available instrumentation needs at least milligrams of material to make a useful analysis. However the Warwick team was able to make use of the University of Warwick’s 700 MHz NMR machine to get a close look at just micrograms of 5 new possible signalling compounds identified as 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (or AHFCAs).

The researchers, led by Dr Christophe Corre, and Professor Greg Challis from the University of Warwick’s Department of Chemistry were able to combine their new insight into these compounds with the relatively new full genetic sequences now available of some Streptomyces bacteria. They became convinced that the AHFCA group of compounds could play a role in stimulating the production of known and novel antibiotics. When they added AHFCAs to Streptomyces coelicolor W81 they were proved correct as it stimulated the production of methylenomycin antibiotics.

While the methylenomycins were already known as antibiotics, the researchers think it likely that novel pathways for antibiotic production are also under the control of AHFCAs. The AHFCAs should be relatively easy to make in significant quantity in a lab and could be used as a new tool for discovery of antibiotics. The researchers are now seeking funding to explore the AHFCAs and develop a novel approach for drug discovery. Introducing a variety of AHFCAs to various Streptomyces bacteria could activate hundreds of pathways for antibiotic production.

The lead researcher on the paper Dr Christophe Corre, from the University of Warwick’s Department of Chemistry said:

“Early results also suggest that this approach could switch on novel antibiotic production pathways in up to 50% of Streptomyces bacteria. With thousands of known members of the Streptomyces family that could mean that AHFCAs could unlock hundreds of new antibiotics to replenish our dwindling arsenal of effective antibiotic drugs.”

Peter Dunn | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>