Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find cancer-inhibiting compound under the sea

12.08.2008
University of Florida College of Pharmacy researchers have discovered a marine compound off the coast of Key Largo that inhibits cancer cell growth in laboratory tests, a finding they hope will fuel the development of new drugs to better battle the disease.

The UF-patented compound, largazole, is derived from cyanobacteria that grow on coral reefs. Researchers, who described results from early studies today (Aug. 7) at an international natural products scientific meeting in Athens, Greece, say it is one of the most promising they've found since the college's marine natural products laboratory was established three years ago.

An initial set of papers in the Journal of the American Chemical Society also has garnered the attention of other scientists, and the lab is racing to complete additional research. The molecule's natural chemical structure and ability to inhibit cancer cell growth were first described in the journal in February and the laboratory synthesis and description of the molecular basis for its anticancer activity appeared July 2.

"It's exciting because we've found a compound in nature that may one day surpass a currently marketed drug or could become the structural template for rationally designed drugs with improved selectivity," said Hendrik Luesch, Ph.D., an assistant professor in UF's department of medicinal chemistry and the study's principal investigator.

Largazole, discovered and named by Luesch for its Florida location and structural features, seeks out a family of enzymes called histone deacetylase, or HDAC. Overactivity of certain HDACs has been associated with several cancers such as prostate and colon tumors, and inhibiting HDACs can activate tumor-suppressor genes that have been silenced in these cancers.

Although scientists have been probing the depths of the ocean for marine products since the early 1960s, many pharmaceutical companies lost interest before researchers could deliver useful compounds because natural products were considered too costly and time-consuming to research and develop.

Many common medications, from pain relievers to cholesterol-reducing statins, stem from natural products that grow on the earth, but there is literally an ocean of compounds yet to be discovered in our seas. Only 14 marine natural products developed are in clinical trials today, Luesch said, and one drug recently approved in Europe is the first-ever marine-derived anticancer agent.

"Marine study is in its infancy," said William Fenical, Ph.D., a distinguished professor of oceanography and pharmaceutical sciences at the University of California, San Diego. "The ocean is a genetically distinct environment and the single, most diverse source of new molecules to be discovered."

The history of pharmacy traces its roots back thousands of years to plants growing on Earth's continents, used by ancient civilizations for medicinal purposes, Fenical added. Yet only in the past 30 years have scientists begun to explore the organisms in Earth's oceans, he said. Fewer than 30 labs exist worldwide and research dollars have only become available in the past 15 years.

HDACs are already targeted by a drug approved for cutaneous T-cell lymphoma manufactured by the global pharmaceutical company Merck & Co. Inc. However, UF's compound does not inhibit all HDACs equally, meaning a largazole-based drug might result in improved therapies and fewer side effects, Luesch said.

Since 2006, Luesch and his team of researchers have screened cyanobacteria provided by collaborator Valerie Paul, Ph.D., head scientist at the Smithsonian Marine Station in Fort Pierce. They check the samples for toxic activity against cancer cells and last year encountered one exceptionally potent extract — the one that ultimately yielded largazole.

To conduct further biological testing on the compound, Luesch and his team have been collaborating with Jiyong Hong, an assistant professor in the department of chemistry at Duke University, to replicate its natural structure and its actions in the laboratory.

Luesch said that within the next few months he plans to study whether largazole reduces or prevents tumor growth in mice.

Luesch has several other antitumor natural products from Atlantic and Pacific cyanobacteria in the pipeline.

"We have only scratched the surface of the chemical diversity in the ocean," Luesch said. "The opportunities for marine drug discovery are spectacular."

Linda Homewood | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: HDAC Marine T-cell lymphoma cyanobacteria largazole marine compound

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>