Researchers Fabricate Complex SWNT Architectures Using Newly Developed Assembly Process

Using a new assembly process, a team of researchers at Northeastern University’s National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-rate Nanomanufacturing (CHN) manufactured large-scale patterned single-walled nanotube (SWNT) networks in complex patterns.

Led by Ahmed Busnaina, Ph.D., the William Lincoln Smith professor and director of Northeastern’s CHN, and professor Yung-Joon Jung, the researchers built intricate SWNT architectures with a high degree of accuracy, laying the foundation for the nanomanufacturing industry to overcome a major obstacle – precise and accurate placement of SWNTs.

These findings were published online in the Journal of the American Chemical Society. The research was funded by the National Science Foundation.

The researchers used a nanotemplate guided fluidic assembly process for optimum accuracy and control over the placement of the SWNTs on a silicon wafer. Using this fluidic assembly process for the SWNTs assembly enabled a highly controlled environment at the nanoscale. A surface treatment on the substrate, or wafer, made SWNTs highly attracted to the surface. As a result, the team was able to build highly organized SWNT architectures in various dimensions and geometries.

This assembly method can be extended to scales as small as a few nanometers while the length of the architecture is scalable up to 12” wafers.

“This novel process helps us better understand the fundamental mechanism governing the assembly of SWNTs and it finally makes building large-scale (wafer-level) nanoscale structures and networks of single-walled nanotubes possible,” said Busnaina.

The potential applications of these complex structures include transistors, horizontal interconnect systems, complex SWNT-based materials and various types of sensors, batteries, photovoltices, medical and biotechnology applications.

Other Northeastern researchers involved in this study include Dr. Sivasubramanian Somu, Dr. Yoland Echegoyen Sanz and graduate students Laila Jaber-Ansari and Myung Gwan Hahm.

About the NSF Nanoscale Science and Engineering Center for High-rate Nanomanufacturing

In the fall of 2004, the National Science Foundation awarded Northeastern University and its partners, the University of Massachusetts Lowell, the University of New Hampshire, Michigan State University and the Museum of Science, a Nanoscale Science and Engineering Center for high-rate Nanomanufacturing with funding of $12.4 million over five years. The Center for high-rate nanomanufacturing is focused on developing tools and processes that will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanoparticles, etc.) and polymer nanostructures. The center nanotemplates are utilized to conduct fast massive directed assembly of nanoscale elements by controlling the forces required to assemble, detach, and transfer nanoelements at high rates and over large areas. The developed nanotemplates and tools will accelerate the creation of highly anticipated commercial products and will enable the creation of an entirely new generation of applications.

About Northeastern
Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university's distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Media Contact

Jenny Eriksen Newswise Science News

More Information:

http://www.neu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors