Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers explore plankton's shifting role in deep sea carbon storage

14.10.2011
The tiny phytoplankton Emiliania huxleyi, invisible to the naked eye, plays an outsized role in drawing carbon from the atmosphere and sequestering it deep in the seas. But this role may change as ocean water becomes warmer and more acidic, according to a San Francisco State University research team.

In a study published this week in the journal Global Change Biology, SF State Assistant Professor of Biology Jonathon Stillman and colleagues show how climate-driven changes in nitrogen sources and carbon dioxide levels in seawater could work together to make Emiliania huxleyi a less effective agent of carbon storage in the deep ocean, the world's largest carbon sink.

Changes to this massive carbon sink could have a critical effect on the planet's future climate, Stillman said, especially as atmospheric carbon dioxide levels continue to rise sharply as a result of fossil fuel burning and other human activities.

While floating free in the sunny top layers of the oceans, the phytoplankton develop elaborate plates of calcified armor called coccoliths. The coccoliths form a hard and heavy shell that eventually sinks to the ocean depths. "About 80 percent of inorganic carbon trapped down there is from coccoliths like these," said Stillman.

Stillman and his colleagues wanted to discover how ocean acidification and changes in the ocean's nitrogen cycle—both hallmarks of climate warming—might effect coccolith development. So they raised more than 200 generations of Emiliania huxleyi in the lab, adjusting carbon dioxide levels and the type of nitrogen in the phytoplankton's seawater bath.

They found that high levels of carbon dioxide—which make the water more acidic—along with a shift in the prevailing nitrogen type from nitrates to ammonium—"had a synergistic effect" on the phytoplankton's biology and growth.

In particular, coccoliths formed under conditions of high carbon dioxide and high ammonium levels were incomplete or hollow, and contained less than the usual amount of inorganic carbon, the researchers noted.

"The ratio of inorganic to organic carbon is important," Stillman explained. "As inorganic carbon increases, it adds more ballast to the hard shell, which makes it sink and makes it more likely to be transported to the deep ocean. Without this, the carbon is more likely to be recycled into the Earth's atmosphere."

"Our results suggest in the future there will be overall lower amounts of calcification and overall lower amount of transport of carbon to the deep ocean," he added.

Emiliania huxleyi typically use nitrates to make proteins, but this form of nitrogen may be in shorter supply for the phytoplankton as the world's oceans grow warmer and more acidic, Stillman and colleagues suggest. In the open ocean, nitrates are upwelled from deep waters, but a thickening layer of warmer surface water could inhibit this upwelling. At the same time, the warmer temperatures favor bacteria that turn recycled nitrogen from surface waters and the atmosphere into ammonium, and acidification inhibits the bacteria that turn ammonium into nitrate.

"It is likely that in the future, the ocean surface will contain more ammonium," which the phytoplankton will assimilate instead of nitrates, Stillman suggested. "Metabolizing nitrogen as ammonium versus nitrates requires different biochemical constituents that impact how well the cells make their coccoliths. They will survive just fine, but their biology will be different as a result."

The study by Stillman and colleagues is the first to look at the intertwined effects of ocean acidification and changes in nitrogen on phytoplankton like Emiliania huxleyi. It's also one of the first studies to observe these effects continuously over a long time scale, "so the responses of the phytoplankton are likely what we'll see in the ocean itself," Stillman said.

Stephane Lefebrve, the SF State postdoctoral student who developed the experiments for the study, said he is now looking for phytoplankton genes that "will help us to build the genetic blueprint of their responses to elevated carbon dioxide and a nitrogen source"

Lefebvre, Ina Benner, Alexander Parker, Michelle Drake, Pascale Rossignol, Kristine Okimura, Tomoko Komada, and Edward Carpenter, all from SF State's Romberg Tiburon Center for Environmental Studies, were co-authors on the Global Change Biology study.

"Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: implications of ocean acidification for the carbon cycle," was published online in October by the journal Global Change Biology.

Jonathon Stillman and Stephane Lefebvre may be reached by contacting Nan Broadbent at SF State: nbroadbe@sfsu.edu or at 415-338-7108.

Nan Broadbent | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>