Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers establish common seasonal pattern among bacterial communities in Arctic rivers

26.11.2009
Discovery identifies aquatic bacteria as possible markers for monitoring Arctic climate change

New research on bacterial communities throughout six large Arctic river ecosystems reveals predictable temporal patterns, suggesting that scientists could use these communities as markers for monitoring climate change in the polar regions.

The study, published this week in the Proceedings of the National Academy of Sciences Early Edition, shows that bacterial communities in the six rivers shifted synchronously over time, correlating with seasonal shifts in hydrology and biogeochemistry.

The research team documents these patterns through a three-year, circumpolar study of planktonic bacterial communities in the six largest rivers of the pan-arctic watershed: the Ob', Yenisey, Lena, Kolyma, Yukon, and Mackenzie Rivers.

"Our results demonstrate that synchrony, seasonality and annual reassembly in planktonic bacterial communities occur on global scales," said lead author Dr. Byron Crump of the University of Maryland Center for Environmental Science Horn Point Laboratory. "Since bacterial communities in big arctic rivers shift predictably with circumpolar seasonal changes in environmental conditions, they may serve as sensitive indicators of climate change in the Arctic."

"The six river systems studied are comparable in size to the Mississippi River in the United States," said coauthor Rainer Amon of Texas A&M University at Galveston. "One of the things we learned is the bacteria communities in all six of them seem to be very similar. There are many questions still to be answered, such as how these bacteria communities might respond to a continued increase in temperature."

This synchrony indicates that hemisphere-scale variation in seasonal climate sets the pace of variation in microbial diversity. Moreover, these seasonal communities reassembled each year in all six rivers, suggesting a long-term, predictable succession in the composition of big river bacterial communities.

Divergence from this synchronous pattern may provide an early signal of climate change in some regions of the Arctic, and may result in changes to river microbial communities and the biogeochemical transformations that they carry out.

Data for this study was collected through the PARTNERS program, a collaboration among scientists from the U.S., Canada and Russia examining the largest rivers of the pan-arctic watershed. By including five of the world's 25 largest rivers in the study, the results provide a unique perspective on global-scale patterns in bacterial diversity.

The article, "Circumpolar synchrony in big river bacterioplankton," appears in the PNAS Early Edition the week of November 23, 2009 and is authored by Drs. Byron Crump, Bruce Peterson, Peter Raymond, Rainer Amon, Amanda Rinehart, James W. McClelland and Robert Holmes. This research was supported by the National Science Foundation.

The University of Maryland Center for Environmental Science is the University System of Maryland's environmental research institution. UMCES researchers are helping improve our scientific understanding of Maryland, the region and the world through its three laboratories – Chesapeake Biological Laboratory in Solomons, Appalachian Laboratory in Frostburg, and Horn Point Laboratory in Cambridge – and the Maryland Sea Grant College.

Christopher Conner | EurekAlert!
Further information:
http://www.umces.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>