Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers engineer a new way to inhibit allergic reactions without side effects

14.10.2011
Researchers from the University of Notre Dame have announced a breakthrough approach to allergy treatment that inhibits food allergies, drug allergies, and asthmatic reactions without suppressing a sufferer's entire immunological system.

The therapy centers on a special molecule the researchers designed, a heterobivalent ligand (HBL), which when introduced into a person's bloodstream can, in essence, out-compete allergens like egg or peanut proteins in their race to attach to mast cells, a type of white blood cell that is the source of type-I hypersensitivity (that is, allergy).

"Unlike most current treatments, this approach prevents allergic reactions from occurring in the first place" says Basar Bilgicer, assistant professor of Chemical and Biomolecular Engineering and Chemistry and Biochemistry and principal investigator in Notre Dame's Advanced Diagnostics & Therapeutics initiative.

Michael Handlogten, lead scientist on the paper and a graduate student in Dr. Bilgicer's group, explained that among the various chemical functionalities he analyzed to be used as the scaffold HBL synthesis, ethylene glycol, an FDA-approved molecule, proved to be the most promising.

Mast cells are part the human body's defense against parasites (such as tapeworms), and when working normally they are attracted to, attach to, and annihilate these pathogens. But type-I hypersensitivity occurs when the cells react to non-threatening substances. More common allergies are due to ambient stimulants, and an allergic response may range from a mild itch to life-threatening anaphylactic shock.

Tanyel Kiziltepe, a research professor in Advanced Diagnostics & Therapeutics, adds that "anaphylaxis can be caused by certain food allergens, insect stings, antibiotics, and some medicines, and we believe HBL has a very high potential to be developed as a preventative medication".

While many medicines treat allergies by weakening a person's entire immune system, this approach only disrupts the process whereby white blood cells bond with allergens in the first place.

"It also does not leave patients open to an increased risk for infections or the development of cancers," explains Bilgicer. "HBLs may be most useful in situations where it's not possible to speak to or gauge someone's sensitivity."

"For example, in an emergency, on a battlefield, or in a remote location, doctors may not be able to ask a patient about an allergy before administering penicillin. An engineered HBL could be given along with the medicine and perhaps prevent a deadly reaction from occurring."

In a normal allergic reaction, allergens bind to a white blood cell, or "mast" cell, and cause the release of inflammatory molecules. Researchers at Notre Dame have shown how non-allergenic molecules, known as heterobivalent ligands, can be designed to attach to mast cells first, preventing the allergic reaction in the first place. (Image above: Backbone alignment of IgG, IgE, and IgM antibody crystal structure, including residues of the conserved nucleotide binding pocket. Credit: B. Bilgiçer)

Advanced Diagnostics & Therapeutics—a Strategic Research Investment of the University of Notre Dame—is dedicated to developing tools and technologies to combat disease, promote health, and safeguard the environment.

Basar Bilgicer | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>