Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Draft "Genetic Road Map" of Biofuels Crop

27.01.2011
The first rough draft of a “genetic road map” of a biomass crop, prairie cordgrass, is giving scientists an inside look at the genes of one of the crops that may help produce the next generation of biofuels.

The study already has produced the “transcriptome” of the species, said plant geneticist Jose Gonzalez of South Dakota State University. He said the transcriptome can be used somewhat like a map — it records the genes the plant uses to reach certain goals.

A transcriptome is the small portion of the DNA of an organism that is transcribed into molecules of ribonucleic acid, or RNA. When DNA is transcribed into what is called “messenger RNA,” it enables the organism to carry out instructions about building and maintaining cells. Scientists can decode those instructions to determine what particular DNA sequences do.

In an article in the September 2010 issue of The Plant Genome, Gonzalez and his colleagues discussed one of the first studies of the prairie cordgrass transcriptome. Prairie cordgrass is being viewed as a species suitable for producing biomass to make biofuels. One of the reasons scientists are interested in prairie cordgrass is because it yields extraordinarily well while tolerating wet conditions, high salinity or poorly aerated soils in low areas unsuitable for growing conventional crops. But it can also survive in open arid prairies.

Gonzalez said one obvious benefit from studying the transcriptome of a plant such as prairie cordgrass is to enable plant breeders to use marker-assisted selection in order to deliberately include gene sequences that confer desirable traits.

In the study, scientists used four tissues of prairie cordgrass to produce 556,198 expressed sequence tags, or portions of expressed genes. They assembled these into 26,302 “contigs,” or overlapping DNA segments from the same gene.

“We calculated probably 40 percent of the genes in prairie cordgrass, or more than 20,000,” Gonzalez said. “We’re starting to be able to look at the genes involved in particular traits. For example, for biofuels, for cellulosic ethanol production, cell wall composition is very important. We can actually look at the genes that are related to that cell wall composition so that we can study the variations of those genes. It can help the breeders eventually to select populations of prairie cordgrass with better composition.”

Gonzalez said cell walls — primarily made up of cellulose, hemicellulose, and lignin — are largely what remains when prairie cordgrass or some other biomass grass has been harvested and allowed to dry.

Cellulose and hemicellulose are carbohydrates that can be transformed into simple sugars that can be fermented. Lignin can’t be broken down by fermentation, though it can be isolated by other treatments.

The genes involved in the lignin biosynthesis pathway have been very well studied in other grasses, and the genes across the grasses are very similar. That will be one area of ongoing research for Gonzalez and his colleagues.

The synthesis of cellulose or hemicellulose is much more complex and involves many more enzymes. That is also an area of further research for the group, though those pathways will take longer to unravel, he said.

Scientists are also interested in the morphological development of the plant because that’s what supports the yield of the plant through many seasons — how the plant develops underground and starts growing at beginning of the season, how it goes into dormancy in fall, how it reactivates itself next season.

That is why current research efforts to decipher the plant’s genetic information are so important, Gonzalez said.

The research is funded in part by a federal grant of $420,000. The grant is from a joint program of the U.S. Department of Agriculture and the Department of Energy to promote biofuels research.

Gonzalez’ co-authors in the study were Kristene Gedye, Arvid Boe and Vance Owens of the Department of Plant Science at SDSU; Yuguang Ban and Xijin Ge of SDSU’s Department of Mathematics and Statistics; Jyothi Thimmapuram, Fengjie Sun, and Chris Wright of the University of Illinois at Urbana-Champaign; and Shahjahan Ali of Saudi Arabia’s King Abdullah University of Science and Technology.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Biofuels Cellulose DNA DNA segments DNA sequence RNA Science TV crop hemicellulose prairie cordgrass

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>