Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers divide enzyme to conquer genetic puzzle

15.03.2013
Rice University scientists find split, mutant protein serves as building block for synthetic biological circuits
Rice University researchers have found a way to divide and modify enzymes to create what amounts to a genetic logic gate.

Biochemist Matthew Bennett and graduate student David Shis created a library of AND gates by mutating a protein from a bacterial virus. The well-understood protein known as T7 RNA polymerase (RNAP) is a strong driver of transcription in cells.

Their discovery should help overcome a bottleneck in the development of synthetic gene networks that mimic digital circuitry. These networks could become diagnostic systems that look for signs of disease and, perhaps, gene therapies to find and treat disease in one step.

The research appeared online this week in the Proceedings of the National Academy of Sciences.

“AND logic gates are normally found in electronics: You have a circuit with two inputs and one output,” said Bennett, an assistant professor of biochemistry and cell biology. “In an AND gate, if the two wires leading to the gate are both on, then the output is also on. If either one or both are off, then the output is turned off.”

Few options have been available to researchers seeking reliable and flexible components for their synthetic circuits. The library of AND gates created at Rice should add significantly to the toolbox available to build larger and more complex gene circuits, Bennett said.

In its native, full-length state, T7 RNAP turns on genes that have a specific “promoter,” or target DNA sequence. The Rice researchers found they could program DNA to express the RNAP in two pieces, which could be manipulated via point mutations to target different promoters in a host cell. “The two pieces of the RNAP might even be made in different parts of the cell and they’ll still find each other,” Bennett said. “They have an affinity for each other, and once they combine, they’ll work together as if they hadn’t been split.”

The enzyme carried out its function only when both halves of the split RNAP were present. Bennett and Shis modified the bacterium E. coli to produce the RNAP segments in response to specific sugar molecules found in the environment. One half of the RNAP is produced only in the presence of arabinose and the other in the presence of lactose. When both sugars were found, their proof-of-concept polymerase would turn on a target gene, in this case a reporter gene that encodes a green fluorescent protein.

Better yet, the RNAP was orthogonal; that is, it didn’t fraternize with the E. coli’s native protein pathways. “This special T7 RNAP will not turn on any other gene but its specific target,” Bennett said. “In that way, it’s transparent to the host. This gives us an easy way to determine whether or not it’s working.”

The researchers found that while split T7 RNAP was not as active in expressing protein products as the full-length polymerase, the pieces were more stable and less prone to mutations that could affect a gene circuit’s function.

Bennett said the next step would be to test the split RNAP in hosts other than E. coli. “We want to port this into more complicated organisms: eukaryotes like yeast or zebrafish or mammalian cells. It will take a little bit of engineering to get them to work in more complicated organisms.”

He sees advanced diagnostics as a reasonable goal for gene circuits using AND gates. “The two inputs can be programmed to respond to separate conditions, whether they’re environment factors outside the organism or tissue-specific markers within a multicellular organism,” Bennett said.

“For instance, your inputs could be cancer markers that would trigger a fluorescent reporter gene for diagnosis or tumor suppressors for treatment,” he said. In addition, multiple gates from the library could be combined and layered to create more complicated circuits that simultaneously monitor many variables. “This means you could build circuits that turn on only in very specific conditions, which is important if you want to kill tumor cells without harming healthy tissue.”

The National Institutes of Health, the National Science Foundation and the Welch Foundation supported the research.

Read the abstract at http://dx.doi.org/10.1073/pnas.1220157110

This news release can be found online at http://news.rice.edu/2013/03/14/researchers-divide-enzyme-to-conquer-genetic-puzzle/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Jeff Falk | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>