Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how underground rodent wards off cancer

06.11.2012
Second mole rat species has different mechanism for resisting cancer

Biologists at the University of Rochester have determined how blind mole rats fight off cancer—and the mechanism differs from what they discovered three years ago in another long-lived and cancer-resistant mole rat species, the naked mole rat.


A blind mole rat is shown on the background of dying necrotic blind mole rat cells.

Credit: University of Rochester

The team of researchers, led by Professor Vera Gorbunova and Assistant Professor Andrei Seluanov, found that abnormally growing cells in blind mole rats secrete the interferon beta protein, which causes those cells to rapidly die. Seluanov and Gorbunova hope the discovery will eventually help lead to new cancer therapies in humans. Their findings are being published this week in the Proceedings of the National Academy of Sciences.

Blind mole rats and naked mole rats—both subterranean rodents with long life spans—are the only mammals never known to develop cancer. Three years ago, Seluanov and Gorbunova determined the anti-cancer mechanism in the naked mole rat. Their research found that a specific gene—p16—makes the cancerous cells in naked mole rats hypersensitive to overcrowding, and stops them from proliferating when too many crowd together.

"We expected blind mole rats to have a similar mechanism for stopping the spread of cancerous cells," said Seluanov. "Instead, we discovered they've evolved their own mechanism."

Gorbunova and Seluanov made their discovery by isolating cells from blind mole rats and forcing them to proliferate in culture beyond what occurs in the animal. After dividing approximately 15-20 times, all of the cells in the culture dish died rapidly. The researchers determined that the rapid death occurred because the cells recognized their pre-cancerous state and began secreting a suicidal protein, called interferon beta. The precancerous cells died by a mechanism which kills both abnormal cells and their neighbors, resulting in a "clean sweep."

"Not only were the cancerous cells killed off, but so were the adjacent cells, which may also be prone to tumorous behavior," said Seluanov.

"While people don't use the same cancer-killing mechanism as blind mole rats, we may be able to combat some cancers and prolong life, if we could stimulate the same clean sweep reaction in cancerous human cells," said Gorbunova.

The research team also included Christopher Hine, Xiao Tian, and Julia Ablaeva in Rochester, Andrei Gudkov at Roswell Park Cancer Institute in Buffalo, NY, and Eviatar Nevo at the University of Haifa in Israel.

Gorbunova and Seluanov say they next want to find out exactly what triggers the secretion of interferon beta after cancerous cells begin proliferating in blind mole rats.

Gorbunova believes the anti-cancer mechanism is an adaptation to subterranean life. "Blind mole rats spend their lives in underground burrows protected from predators," said Gorbunova. "Living in this environment, they could perhaps afford to evolve a long lifespan, which includes developing efficient anti-cancer defenses."

Peter Iglinski | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>