Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how underground rodent wards off cancer

06.11.2012
Second mole rat species has different mechanism for resisting cancer

Biologists at the University of Rochester have determined how blind mole rats fight off cancer—and the mechanism differs from what they discovered three years ago in another long-lived and cancer-resistant mole rat species, the naked mole rat.


A blind mole rat is shown on the background of dying necrotic blind mole rat cells.

Credit: University of Rochester

The team of researchers, led by Professor Vera Gorbunova and Assistant Professor Andrei Seluanov, found that abnormally growing cells in blind mole rats secrete the interferon beta protein, which causes those cells to rapidly die. Seluanov and Gorbunova hope the discovery will eventually help lead to new cancer therapies in humans. Their findings are being published this week in the Proceedings of the National Academy of Sciences.

Blind mole rats and naked mole rats—both subterranean rodents with long life spans—are the only mammals never known to develop cancer. Three years ago, Seluanov and Gorbunova determined the anti-cancer mechanism in the naked mole rat. Their research found that a specific gene—p16—makes the cancerous cells in naked mole rats hypersensitive to overcrowding, and stops them from proliferating when too many crowd together.

"We expected blind mole rats to have a similar mechanism for stopping the spread of cancerous cells," said Seluanov. "Instead, we discovered they've evolved their own mechanism."

Gorbunova and Seluanov made their discovery by isolating cells from blind mole rats and forcing them to proliferate in culture beyond what occurs in the animal. After dividing approximately 15-20 times, all of the cells in the culture dish died rapidly. The researchers determined that the rapid death occurred because the cells recognized their pre-cancerous state and began secreting a suicidal protein, called interferon beta. The precancerous cells died by a mechanism which kills both abnormal cells and their neighbors, resulting in a "clean sweep."

"Not only were the cancerous cells killed off, but so were the adjacent cells, which may also be prone to tumorous behavior," said Seluanov.

"While people don't use the same cancer-killing mechanism as blind mole rats, we may be able to combat some cancers and prolong life, if we could stimulate the same clean sweep reaction in cancerous human cells," said Gorbunova.

The research team also included Christopher Hine, Xiao Tian, and Julia Ablaeva in Rochester, Andrei Gudkov at Roswell Park Cancer Institute in Buffalo, NY, and Eviatar Nevo at the University of Haifa in Israel.

Gorbunova and Seluanov say they next want to find out exactly what triggers the secretion of interferon beta after cancerous cells begin proliferating in blind mole rats.

Gorbunova believes the anti-cancer mechanism is an adaptation to subterranean life. "Blind mole rats spend their lives in underground burrows protected from predators," said Gorbunova. "Living in this environment, they could perhaps afford to evolve a long lifespan, which includes developing efficient anti-cancer defenses."

Peter Iglinski | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>