Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover turbo switch of calcium pump in biological cells

22.10.2012
A Danish-British research team has discovered a turbo switch in the vital calcium pump in our body's cells.

In studies at the X-ray source DORIS at Deutsches Elektronen-Synchrotorn DESY in Hamburg and the European Synchrotron Radiation Facility ESRF in Grenoble the team discovered that the on-off switch of the pump has a previously unknown third position, which switches the pump into a turbo gear.

The group of Henning Tidow from Aarhus University and Lisbeth Poulsen from the University of Copenhagen published its studies in the British journal Nature (advance online publication). "The discovery not only improves our understanding of a fundamental mechanism in the biology of all higher organisms, but could one day allow for better treatment of certain diseases in which the calcium balance is disturbed," says Tidow. The researchers used the measuring station of the European Molecular Biology Laboratory EMBL at DORIS.

The element calcium plays a central role in many processes of life, such as cell division, the day-night cycle and the communication of cells. The decisive factor is a gradient in the calcium concentration, which is normally high outside the cell and low inside it. This gradient is maintained among others through a calcium pump, which occurs in all higher organisms (eukaryotes) – from the nettle to the blue whale. For example, under stress the calcium concentration in the cell increases and triggers a corresponding reaction. Afterwards, the concentration must be lowered again.

"The calcium transport from the cell requires a lot of energy. It is therefore important that the pump is activated only when needed," explains Poulsen. The pump – known as PMCA (plasma-membrane calcium-ATPase) – thus has a switch, which is actuated by the protein calmodulin. When calcium binds to calmodulin, the latter changes its shape so that it can dock onto a binding site of the cell's calcium pump, thereby activating the pump. When the calcium concentration in the cell increases, more and more pumps are thus switched on.

The researchers led by Tidow viewed the entire switching complex with X-rays to reveal its molecular structure. They chose the switching complex from cells of the plant thale cress (Arabidopsis thaliana), studying it first in crystal form and then in solution, which is closer to the natural environment of the molecule. "Based on this analysis, we were able to create a detailed three-dimensional model of the region of the calcium pump that interacts with calmodulin," says Tidow. "To our great surprise, we found that the calcium pump has two binding sites for calmodulin and not just one as previously thought."

The switching complex thus consists of a dumbbell-like structure with two calmodulin binding sites. To determine whether the second site has a biological significance, the researchers tested pumps in which they had disabled one switch. Indeed, these pumps could not run at full power. "Our results show that the calcium pump is controlled in three steps," explains Poulsen. "It is switched off when no calmodulin is bound to the switching complex. The pump is running at medium speed as soon as one binding site is occupied, and at full speed when calmodulin is bound to both sites."

The pump is thus activated step by step, depending on how much calcium is present in the cell. When the calcium concentration increases, the pump first operates in an energy-efficient way at moderate speed. If the calcium threatens to reach an amount that is dangerous for the cell, the pump changes into the turbo gear, which enables it to very quickly reduce the concentration.

Bioinformatics analyses revealed that this double switch occurs not only in all plant species, but in general in all cells with a nucleus (eukaryotes). "This study underscores the strength of integrating structural biology in interdisciplinary research," underlines Poul Nissen of Aarhus University. As the next step, the researchers aim to decipher the structure of the entire calcium pump.

Thomas Zoufal | EurekAlert!
Further information:
http://www.desy.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>