Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover “On Switch” for Cell Death Signaling Mechanism

07.01.2009
Scientists at Burnham Institute for Medical Research (Burnham) have determined the structure of the interactions between proteins that form the heart of the death inducing signaling complex (DISC), which is responsible for triggering apoptosis (programmed cell death).

The research, performed by Stefan Riedl, Ph.D., and colleagues, published online on Dec. 31 in the journal Nature, highlights how protein-protein interactions between Fas receptor and Fas-associated death domain protein (FADD) mechanistically control DISC formation.

The X-ray crystal structure of the Fas-FADD death domain complex revealed a particular arrangement of four FADD death domains bound to four Fas death domains. The structure showed that Fas undergoes a conformational change, creating an open form of the protein that acts as a site for FADD binding and also participates in the association of other Fas molecules in the clustered complex. Dr. Riedl and colleagues propose that Fas opening itself acts as a control switch for DISC formation and initiation of apoptosis.

“We found an explanation for why binding of Fas ligand is not enough to initiate DISC formation and set cell death in motion,” said Dr. Riedl. “You need a special arrangement of Fas receptors to trigger opening of the Fas death domain, and only then do you get activation. Another interesting point is that this X-ray crystal structure uncovered a general mechanism for receptor signaling solely by protein clustering. Understanding the initiation of the death inducing signaling complex is of great interest because if you can activate or inhibit cell death you can have a major impact on many diseases such as cancer.”

This work, by scientists of the Apoptosis & Cell Death program at the Burnham Cancer Center and their collaborators, sheds the first light on the detailed architecture of this elusive complex. Despite intense efforts by various teams, the nature of the Fas-FADD interactions and their role in DISC signaling had not been directly characterized prior to this study. The X-ray crystal structure now provides detailed information about the Fas-FADD complex at a resolution of 2.7 Angstroms. Electron microscopy studies additionally revealed that incubation of Fas death domain with full-length FADD resulted in the formation of DISC-like structures that clustered together.

This research was funded by grants from the National Institutes of Health and the National Cancer Institute.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest growing research institutes in the country. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | Newswise Science News
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>