Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Discover “On Switch” for Cell Death Signaling Mechanism

Scientists at Burnham Institute for Medical Research (Burnham) have determined the structure of the interactions between proteins that form the heart of the death inducing signaling complex (DISC), which is responsible for triggering apoptosis (programmed cell death).

The research, performed by Stefan Riedl, Ph.D., and colleagues, published online on Dec. 31 in the journal Nature, highlights how protein-protein interactions between Fas receptor and Fas-associated death domain protein (FADD) mechanistically control DISC formation.

The X-ray crystal structure of the Fas-FADD death domain complex revealed a particular arrangement of four FADD death domains bound to four Fas death domains. The structure showed that Fas undergoes a conformational change, creating an open form of the protein that acts as a site for FADD binding and also participates in the association of other Fas molecules in the clustered complex. Dr. Riedl and colleagues propose that Fas opening itself acts as a control switch for DISC formation and initiation of apoptosis.

“We found an explanation for why binding of Fas ligand is not enough to initiate DISC formation and set cell death in motion,” said Dr. Riedl. “You need a special arrangement of Fas receptors to trigger opening of the Fas death domain, and only then do you get activation. Another interesting point is that this X-ray crystal structure uncovered a general mechanism for receptor signaling solely by protein clustering. Understanding the initiation of the death inducing signaling complex is of great interest because if you can activate or inhibit cell death you can have a major impact on many diseases such as cancer.”

This work, by scientists of the Apoptosis & Cell Death program at the Burnham Cancer Center and their collaborators, sheds the first light on the detailed architecture of this elusive complex. Despite intense efforts by various teams, the nature of the Fas-FADD interactions and their role in DISC signaling had not been directly characterized prior to this study. The X-ray crystal structure now provides detailed information about the Fas-FADD complex at a resolution of 2.7 Angstroms. Electron microscopy studies additionally revealed that incubation of Fas death domain with full-length FADD resulted in the formation of DISC-like structures that clustered together.

This research was funded by grants from the National Institutes of Health and the National Cancer Institute.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest growing research institutes in the country. The Institute ranks among the top four institutions nationally for NIH grant funding and among the top 25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>