Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover structure of key Ebola protein

14.01.2009
Research led by Iowa State University scientists has them a step closer to finding a way to counter the Ebola virus.

A team led by Gaya Amarasinghe, an assistant professor in biochemistry, biophysics and molecular biology, has recently solved the structure from a key part of the Ebola protein known as VP35.

VP35 interferes with the natural resistance of host cells against viral infections.

"Usually when viruses infect cells, the host immune system can fight to eventually clear the virus. But with Ebola infections, the ability of the host to mount a defense against the invading virus is lost," said Amarasinghe.

This is because the VP35 protein interferes with the host's innate immune pathways that form the first line of defense against pathogens, he said.

In their research directed toward understanding host-viral interactions, Amarasinghe and his research team used a combination of X-ray crystallography and nucleic magnetic resonance spectroscopy to solve the structure using non-infectious protein samples.

A report describing the findings is published this week in the journal Proceedings of the National Academy of Sciences of the United States of America.

Now that the structure from a key part of VP35 is available, this information can be used as a template for anti-viral drug discovery.

"The next step is to use this structure to identify and design drugs that potentially bind with VP35," he said.

If a drug that inhibits VP35 function can be discovered, then the Ebola virus could potentially be neutralized.

"Without functional VP35, the Ebola virus cannot replicate so it is noninfectious," said Amarasinghe.

The Ebola virus can cause hemorrhagic fever that is usually fatal. According to the Center for Disease Control and Prevention, outbreaks have caused more than 1,000 deaths, mostly in Central Africa, since it was first recognized in 1976.

Amarasinghe co-authored this study with Daisy Leung, assistant scientist; Nathaniel Ginder, graduate student; Bruce Fulton, associate scientist; and Richard Honzatko, professor; all from Iowa State's biochemistry, biophysics and molecular biology department, together with Christopher Basler, associate professor from Mount Sinai School of Medicine in New York City and Jay Nix from the Berkeley National Laboratory in Berkeley, Calif.

Work in the Amarasinghe laboratory was funded in part by the Roy J. Carver Charitable Trust.

Gaya Amarasinghe | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>